
90 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 1, JANUARY 2001

A Programmable Continuous-Time Floating-Gate
Fourier Processor

Matt Kucic, AiChen Low, Paul Hasler, Member, IEEE, and Joe Neff

Abstract—We present a programmable continuous-time
floating-gate Fourier processor that decomposes the incoming
signal into frequency bands by analog bandpass filters, multiplies
each channel by a nonvolitile weight, and then recombines the
frequency channels. A digital signal processor would take a
similar approach of computing a fast Fourier transform (FFT),
multiplying the frequency components by a weight and then
computing an inverse FFT. We decompose the frequency bands
of the incoming signal using the transistor-only version of the
autozeroing floating-gate amplifier (AFGA), also termed the
capacitively coupled current conveyer (C4). Each band decom-
position is then fed through a floating-gate multiplier to perform
the band weighting. Finally, the multiplier outputs are summed
using Kirchoff current law to give a band-weighted output of the
original signal. We examine many options to reduce second-order
harmonic problems inherent in the single-sided C4. We present a
method for programming arrays of floating-gate devices that are
used in the weighting of the bands. All of these pieces fit together
to form an elegant and systematic Fourier processor.

Index Terms—Analog floating-gate arrays, floating-gate circuits,
programmable analog circuits, programmable analog filters.

I. INTRODUCTION

T HIS paper presents a programmable continuous-time
floating-gate Fourier processor. The architecture is based

on a modified fast Fourier transform implementation in a
digital signal processing (DSP) filter. The design is modular,
allowing flexibility in the number of taps needed without major
additional layout overhead. The design was chosen to allow
for a modular system where addition of taps as needed results
in very little additional overhead. This filter can be employed
anywhere a DSP filter is used without the drawbacks associated
with DSP filtering, such as aliasing. This analog filter allows
the same level of programming as the DSP filter.

Fig. 1 graphically demonstrates the top-level description of
our Fourier processor chip. In this figure, we show four band
taps that can be expanded to as many as needed. Each tap con-
sists of a programmable bandpass filter and a weighted multi-
plier. The input signal is taken as a voltage to allow the signal
to be broadcasted to the multiple bandpass filters or band taps.
The output of each bandpass filter is also a voltage, which can
be broadcasted to several weighted multiplier arrays. Therefore,
with one processor, we can output multiple band-weighted ver-

Manuscript received April 2000; revised November 2000. This paper was
recommended by Associate Editor T. Lande.

The authors are with the Department of Electrical and Computer Engi-
neering, Georgia Institute of Technology, Atlanta, GA 30332-0250 USA
(e-mail: phasler@ee.gatech.edu).

Publisher Item Identifier S 1057-7130(01)02023-7.

sions of the original signal. The output of each weighted multi-
plier is a current that allows simple addition via Kirchoff current
law to assemble the final output signal.

The multiple bandpass filters produce a frequency decompo-
sition of the incoming signal into multiple bands. We use a tran-
sistor-only circuit model of the autozeroing floating-gate am-
plifier (AFGA) [7], which we will refer to as the capacitively
coupled current conveyer (C) [2], to achieve a broadly tuned
bandpass response. By adding feedback between the stages, we
sharpen the filter rolloff response if desired. This approach is an-
other method for getting cochlea-like responses, but it is missing
many of the details that are present in the biologically based de-
tailed models [5], [6]. On the other hand, this implementation
does not suffer from the noise accumulation and harmonic dis-
tortion accumulation typically seen in cochlear cascades [5].

The weighting is performed using floating-gate transistors [1]
in a multiplier configuration. The benefit to using a floating gate
for the weighting is small size and circuit simplicity. Also, by
using floating-gate transistors for the weighting, we are using
the actually memory element as part of the computation, which
provides for an extremely high chip density. Therefore, in the
circuit complexity and power dissipation that one would store an
array of 4-bit digital coefficients, we simultaneously compute
a parallel vector multiplication with this matrix. We call this
technology, which combines computation and memory, analog
computing arrays (ACAs). Further, this system only needs to
operate at the incoming data speed. This density is desired to re-
alize chips with large number of band taps or chips with several
band-weighted outputs. This memory element retains its value
even when power is not applied to the device, and eliminates the
need for separate nonvolitile memory cells with analog-to-dig-
ital and digital-to-analog circuitry to store and reproduce the ac-
tual analog weight.

We present analysis and experimental measurements of this
analog Fourier processor chip fabricated in a double-poly 2.0-
m MOSIS process; we have shown that these computations can
be performed also in single-poly microprocessor process [4].
We have fabricated these programmable filters in 2.0-, 1.2-,
0.5-, and 0.25-m MOSIS processes. Section II describes the
circuits for the continuous-time bandpass filters. These circuits
are a transistor-only circuit model of the AFGA termed Cthat
we initially described elsewhere [2]. Section III describes the
floating-gate circuits for the weighting multipliers. Section IV
describes our weight programming scheme. Section V demon-
strates the performance of the complete Fourier processor. This
processor is a first step to developing all-analog floating-gate
adaptive filters.

1057–7130/01$10.00 © 2001 IEEE

KUCIC et al.: A PROGRAMMABLE CONTINUOUS-TIME FLOATING-GATE FOURIER PROCESSOR 91

Fig. 1. Top-level pictorial representation of our programmable analog Fourier processor. We separate the signal into frequency bands not by computing a DFT
algorithm but by a series of bandpass filters. We can easily divide our frequency space exponentially instead of linearly, as in typical DFT algorithm.

Fig. 2. A single-ended version of our continuous-time bandpass amplifier. This circuit is an all-transistor equivalent of the AFGA. (a) The all-transistor circuit
version of the AFGA. The ratio ofC toC sets the gain of both inverting amplifiers. The capacitancesC andC represent both the parasitic and the explicitly
drawn capacitances. M4 represents the tunneling junction in the AFGA, and M3 represents the injection current (gate current) from M2 in the AFGA. The nFET
is a current source that sets the current through the pFET. (b) Frequency response for three different values ofV and three different values ofV . We can
independently change the high-frequency corner withV and the low-frequency corner withV . The passband gain of this circuit is roughly 6.4. (c) Frequency
response of our bandpass circuit when� is near� . When symmetrically decreasing� and� , the center frequency remains nearly unchanged but the bandpass
gain decreases. This type of response is our focus in this paper.

II. A D IFFERENTIAL CONTINUOUS-TIME BANDPASSAMPLIFIER

The first element in our Fourier processor is a group of band-
pass amplifiers. In addition to band selectivity, the choice of
the bandpass amplifier design must take into account die area
and quiescent current, as many will be needed on one chip. Cer-
tain applications for this processor such as in auditory systems
will require 100–200 of these band taps. Because we are de-
signing an on-chip bandpass filter, we are not constrained to
building op-amp circuits with feedback. These bandpass am-
plifiers should also have well-controlled gains, which is easily
achieved by capacitive feedback and is ideal for small size.

Fig. 2 shows a single-ended version of our bandpass ampli-
fier. This continuous-time filter allows both the low-frequency
and high-frequency cutoffs to be controlled electronically by
changing the appropriate bias currents. We have derived analyt-
ical models that are in good agreement with experimental data
to completely characterize the amplifier [2] and have simulated
these circuits using Cadence [3]. We present experimental mea-

surements that were taken using 3.0-V power supplies in this
section.

We will model voltage and current swings around the
circuit’s steady-state values, because the input signals are
capacitively coupled to the gate terminals. We describe the
subthreshold nFET or pFET channel current in saturation
for a change in the field-effect transistor (FET)’s gate voltage

and drain-to-source voltage , around a bias current
as [6]

nFET:

pFET:

(1)

where
fractional change in the pFET surface potential due to
a change in ;

92 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 1, JANUARY 2001

Fig. 3. Circuit diagram and experimental data from a DIBL pFET. (a) Circuit diagram of this DIBL pFET. We build a DIBL FET from a traditional FET by using
a very short channel length for a given process. (b) These data were taken from anL = 1:75 �m pFET built in a 2-�m CMOS process. The DIBL FET results
in an exponentially increasing current due to linear changes in drain voltages for subthreshold biases; we see a similar effect for above-threshold currents. Good
agreement is seen to a single curve fit of this data to (1), with� = 0:614 andV = 1 V. We can use this device to increase the linear range of on-chip FET circuits
without resistors.

fractional change in the nFET surface potential due to
a change in ;
Early voltage of the nFET or pFET;
thermal voltage .

In (1), we use a modified form of the Early voltage expression
that is consistent with classical formulations for large and
more closely models the behavior for small. Fig. 3(b) shows
that the channel current through this pFET is an exponential
function of both gate and drain voltage for a very short channel-
length device. We call a device that exhibits this exponential
relationship between channel current and drain voltage a drain-
induced barrier lowering (DIBL) FET. The symbol used for the
DIBL FET is shown in Fig. 3(a).

Fig. 2(b) shows this circuit’s bandpass transfer function. The
nFET current sourceM1 sets the amplifier’s bias current and
therefore the resulting high corner frequency. The pFET cur-
rent sourceM4 sets the bias current and the resulting low corner
frequency. Fig. 2(b) shows the measured pAFGA frequency re-
sponse for various inputs and, bias voltages. We can ob-
tain the following transfer function [2]:

(2)

where
high-pass corner that is a function of the bias current
flowing throughM4 and ;
low-pass corner that is a function of the bias current
flowing throughM1 and all the circuit’s capacitors;
high-frequency feedthrough gain.

We can simplify (2) when , that is, when the time
constants are sufficiently separated to form an amplifier region.

In this regime, and independently alter the corner fre-
quencies [2]. At low frequencies, the circuit in Fig. 2 behaves
as a high-pass filter. We approximate (2) as

(3)

The corner frequency is set by . At high frequencies, the
circuit in Fig. 2 behaves as a low-pass filter. In this case, we
approximate (2) as

(4)

At frequencies much higher than the integrating regime, this
circuit exhibits capacitive feedthrough, which can be reduced
by an increase in either or . The circuit in Fig. 2(a) can
also operate as a bandpass filter with a narrow passband, that
is, and can affect the entire transfer function. Fig. 2(c)
shows the frequency response for two valuesand that are
close together; this experiment shows this bandpass behavior.

This bandpass circuit was originally developed as an
transistor-only version of our AFGA [7], [1]. We use one
subthreshold transistor to model the behavior of an elec-
tron-tunneling device and another to model the behavior of
pFET hot-electron injection. This circuit behaves similarly to
the AFGA with different operating parameters. This filter has a
low-frequency cutoff at frequencies above 1 Hz, and therefore
complements the operating regimes of the AFGA (1 Hz
cutoff). The close connection to the AFGA allows for direct
applications of existing results.

1) We can increase the filter’s linear (minimum) range by
increasing .

2) A voltage input at the filter’s linear range corresponds to
26 dB second-harmonic dominated distortion.

KUCIC et al.: A PROGRAMMABLE CONTINUOUS-TIME FLOATING-GATE FOURIER PROCESSOR 93

3) The total output-noise power is roughly proportional to
and is inversely proportional to .

4) We can increase the linear range by increasing; and
we can increase the dynamic range by increasingand

[8].

The circuit in Fig. 2(a) and the resulting circuit family of capac-
itor-based circuits based on the AFGA have several circuit appli-
cations. The first application is in circuits where adaptation rates
need to be faster than can easily be achieved by tunneling/injec-
tion currents. The second application is in chips requiring very
low power supplies, particularly in battery applications. AFGA
circuits require higher supplies than the process rating, primarily
because the hot-electron effects that are exploited in the AFGA
are in fact what set the process supply limits.

We use a differential circuit topology, shown in Fig. 4, to
eliminate the second-harmonic distortion components and
increase the filter’s power-supply rejection. These circuits
are similar to the multiplier circuits described in Section III
that require balanced differential inputs. Using the DIBL
device effectively increases the linear range of these devices;
in [2], we showed that harmonic distortion at the low corner
is significant due to the nonlinearities of the adapting pFET
transistor. The key problem for linearity for an amplifier with
gain is the harmonic distortion due to the transistors setting
the high-pass response. Adding the DIBL device increases the
linear range from 35 mV to nearly 1 V. The DIBL transistor’s
effect reduces harmonic distortion in the single-ended amplifier
reported earlier [2]. Both the single and differential amplifiers
had a gain of ten and identical bias settings. The large output
amplitude (0.8 V) sinusoidal signal has roughly30 dB
second-harmonic distortion. This distortion is strongly reduced
(26 dB down) in the differential version; the differential device
is limited by third-harmonic distortion at its linear range. This
0.8-V output amplitude sinusoidal signal has roughly37 dB
third-harmonic distortion.

III. FLOATING-GATE INPUT-WEIGHT MULTIPLIER

Fig. 5 shows the circuit model for our four-quadrant multi-
plier. This circuit was presented initially as part of a four-quad-
rant synapse [11]; the DIBL devices enhance the linear range of
these synapses. These DIBL devices are also used to provide the
correct feedback for continuous floating-gate currents in pFET
floating-gate devices, typically used to simultaneously perform
Hebbian-type learning rules [11], [1], [9]. Fig. 5 also shows the
measured data from the floating-gate weighted multiplication.
We obtain a reasonable multiplication over a 0.5-V differen-
tial input range for a wide-range positive and negative range in
weight values. Second harmonic distortion dominates this mul-
tiplier, as seen from the curve. Offsets due to the inputs
and mismatch are not a problem because each weight is explic-
itly programmed and can be set to eliminate the offsets. We can
reduce the harmonic distortion by either adding two additional
floating-gate elements to each multiplier or, in a straightfor-
ward modification, developing a current-mode approach using
weighted current-mirror multipliers and floating-gate log-do-
main bandpass filters [10].

Fig. 4. Differential version of the circuit in Fig. 2. (a) The circuit diagram of
this differential bandpass filter. We add an additional DIBL MOSFET (Fig. 3)
to extend the linear range of this device. Harmonic distortion for single-ended
amplifier at its linear range (80 mV input) is�26 dB. Harmonic distortion for
the differential ended decreased in second order but minimally in third order.
The third harmonic distortion is�36 dB.

We want to derive equations to model this multiplier behavior.
We begin by modifying (1) to model a floating-gate pFET with
a DIBL device connected to the source

(5)

where the weight is a source current measure of the
floating-gate charge and is the exponential slope of this
element between capacitive input and channel current. This
exponential slope is a direct factor of the capacitive voltage di-
vider into the floating gate. The Early voltage of the DIBL FET

is typically around 1 V. This circuit gives us a four-quadrant
multiplication between the input and a stored weight. This
synapse couples two source-degenerated (s-d) floating-gate
pFETs in a way that subtracts out their common responses to
achieve a four-quadrant multiplication. Using (5), the output
(drain) current is the sum of the current from each s-d pFET
transistor

(6)

assuming the inputs are within the input linear range. Then
we approximate the exponentials as linear functions

(7)

where and are the weights corresponding to pFET
devices connected to and , respectively. The synapse
weight, defined by , and take on both positive
and negative values. Therefore, the change in the output current

94 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 1, JANUARY 2001

Fig. 5. Four-quadrant weighted multiplication using floating-gate devices. Shown are experimental data of the transfer characteristics of these devices. Between
V andV is our symbol for a tunneling junction, which is a capacitor between the floating gate and an n-well.

is a four-quadrant product of the input by the synapse weights
for fast timescales.

IV. FLOATING-GATE PROGRAMMING

We present a systematic method for programming an array
of floating-gate devices, which are a critical part of this
single-chip system. The e-pot (electronically programmable
voltage source) approach is explicitly designed to program
single voltage biases in a user-friendly manner [14], [15].
However, these cells require significant circuit complexity and
therefore are inefficient for large floating-gate arrays. Instead,
we will trade off user-friendly but complex circuits for simpler
circuits programmed by well-controlled computer algorithms
that can be implemented in industrial testers. We also desire a
programming algorithm that is based on output values actually
used during operation; therefore, compensation circuitry is
not needed to produce a smooth transition from operation to
program mode. As a result, we have developed a programming
scheme where we perform injection over a fixed time window
based on injection physics, and then measure the results after
returning the cell in operating mode. Fig. 6 shows the control
logic we use to automate the programming of an array of
floating-gate devices. Once programmed, these floating-gate
devices retain their channel current in a nonvolatile manner like
the e-pot circuits.

A. Physics of Programming pFET Floating-Gate Devices

Developing an efficient algorithm for pFET programming re-
quires discussing the dependencies of the gate currents and the
ability to modify a single device with high selectivity. We pro-
gram a device by increasing the output current of a pMOS tran-
sistor using hot-electron injection and decrease the output cur-

rent using electron tunneling. In our scheme, devices are pro-
grammed using hot-electron injection and are reset by tunneling
the devices below the level to which they are to be programmed.
This is chosen due to device selectivity for each method, which
will be described. We use a time response of 0.5 s or greater
because of the instruments needed to carefully characterize this
measurement. The floating-gate devices could easily handle re-
sponses in 1 ms by simply increasing the tunneling and drain-to-
source voltages used during programming.

Before deciding on a particular programming scheme, we
first considered how the synapses (floating-gate pFET with
DIBL device) interact when coupled into an array. The device
interactions are due entirely to the nonlinear dependence of
the terminal voltages on the floating-gate current. We choose
the tunneling and drain terminals to be common along a row;
therefore, when programming one row, the other rows remain
unaffected. We need to establish how to selectively modify the
charge on a particular floating gate without affecting the other
floating gates along the same row.

Fig. 7 illustrates how we can program a single floating-gate
device along a row; we originally showed the selectivity data on
nFET floating-gate devices [16]. The change in source current in
the selected synapse is much less than the corresponding change
in the nonselected synapse, and is nearly independent of drain
voltage. Tunneling selectivity along a row in this array is entirely
a function of how far apart the two floating gates are pushed by
the gate inputs. This is due to the fact that the amount of tunneled
current is based on the voltage across the tunneling capacitor.
We obtain exponentially more tunneling current for each linear
increase across the capacitor due to the probability of electrons’
tunneling through the barrier. To select a particular synapse, we
bring that floating gate to as low a voltage as possible, while at
the same time bringing all the remaining floating gates to as high

KUCIC et al.: A PROGRAMMABLE CONTINUOUS-TIME FLOATING-GATE FOURIER PROCESSOR 95

Fig. 6. Circuit diagram of chip design to allow dual programming/operation. When the control signalS is one, then we close the switches to the decoder circuitry,
enabling programming, and open the switches to the normal operating circuitry. Both decoders either set their outputs toV if zero or select an output to an
external pin. When the control signalS is zero, then we open the switches to the decoder circuitry and close the switches to the normal operating circuitry.

Fig. 7. Output currents from two elements on the same row of a floating-gate
pFET array, showing 115 tunneling operations followed by 200 injection
operations. We modified the floating-gate charge using several 0.5-s pulses.

a voltage as possible. Our selectivity ratio for the pFETs in Fig. 7
on the same row is roughly 40 for a 5-V supply. The tunneling
selectivity can be increased by increasing the input voltage steps

or by increasing the gate coupling to the floating gate. Because
of the poorer selectivity, we use tunneling primarily for erasing
and for rough programming steps.

We simplified our initial circuit by tying all tunneling rows to-
gether to consume only one pin on the package. This approach
avoids the need for high-voltage transistor switches to tunnel
along an individual row. Using this simplified approach, we can
only select down to a column of synapses to be modified via
tunneling because in our implementation, the gates are tied to-
gether in columns. However, this approach works successfully
in our scheme because tunneling is used primarily for erasing. In
future revisions, we will add row decoding to tunneling, which
will add an additional level of programming control.

Fig. 8 shows experimental measurements of pFET injection
versus drain-to-channel voltage. Injection current in the tran-
sistor is modeled by

(8)

where and mV. For injection to occur in a
device, there are two controlling parameters: the source-to-drain
voltage to create the high field and the gate voltage to create
the MOS channel. Therefore, a device in the array is selected
to be programmed by lowering the column voltage, containing

96 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 1, JANUARY 2001

Fig. 8. Measured data of pFET injection efficiency versus the drain-to-channel
voltage for four source currents. Injection efficiency is the ratio of injection
current to source current. The injection efficiencies are nearly identical for the
different source currents; therefore, they appear to be indistinguishable on the
plot. At drain-to-channel voltages equal to 8.2 V, the injection efficiency e-folds
(increases by a factor of e) for a 250-mV increase in drain-to-channel voltage.

the gate of the device, to around threshold (optimal injection
voltage) and the row voltage, containing the drain of the de-
vice, to a voltage to produce injection, while all other rows and
columns are tied to . Because both conditions described ear-
lier must be met, we have the ability to select the device to pro-
gram out of the array. For larger source-to-drain voltages, we
will get exponentially more injection current, as shown in (8). To
control the amount of injection in the device, the source-to-drain
voltage is modulated by raising or lowering the rows’ voltage.
During programming, the system voltage is raised to values to
allow injection in that process. All current calculations for the
device are performed with the same drain-to-source voltage as
during operation at the specified gate voltage. This allows the
device to be programmed for its operational voltages.

B. The Programming Method

The programming of the floating gate is performed over
multiple iterations. This iterative approach uses mathematical
models and parameter extraction to zero in on the target current.
We are interested in a change in the floating-gate voltage, which
is dependent on the current being injected onto the floating
node, as shown in (9). For this, we will choose a fixed time
period for , which will be used during every injection. Also,

is assumed roughly constant with time for small changes
and is pulled out as such

(9)

We solve for hot-electron injection programming using (8) as

(10)

Fig. 9. Plot showing the programming of four current values. All four values
converged within nine steps.

where we define . This equation models
the current that a given will produce during injection for
time. We have defined as the channel current in the transistor.

is defined as the current in the device when we choose a
, or can be thought of as where we start from (original

state). is used to define the current in the device before
injection in every iterative step, or can be thought of as where
we currently are. is used to define the current that is desired
in the device after the injection pulse is performed.

In the first step, we calculate the termfrom (10). Also, we
are attempting to find the reference with this step. The
process involves a loop that takes the drain voltage and slowly
lowers it incrementally while measuring the before and after
currents. We take the reference to be the voltage at which
some percent change threshold is exceed. For the experiments
we have used 30%, but this is an arbitrary value. Therefore, in
this first step, is equal to zero by choosing this voltage as a
reference, making the exponential term equal to one. In the term

, we take the term to be the current at , so the
is also equal to . With being close to one, we assume

it to be one. The equation then reduces down to

(11)

Therefore, we can calculateby knowing the before and after
current in the channel. We then choose thisused for injec-
tion to be our reference voltage for future injections. Also, the
“before” injection current becomes our term for the future
calculations. The threshold mentioned earlier is a given value
of , which is used to bring us to a valid injection for the
device.

In step two, we know the , the , and the terms from
the previous step. We can then plug these terms into (10) with
a guess of to calculate a for the next injection. This
should result in a value of to inject the device to , which
is the target current to program. The lower the guess of,

KUCIC et al.: A PROGRAMMABLE CONTINUOUS-TIME FLOATING-GATE FOURIER PROCESSOR 97

Fig. 10. Experimental measurements of frequency response of our programmable bandpass filters. (a) Frequency response for a single bandpass filterand for the
array bandpass filters with programmed weighting function. We set zero tilt on the frequency line; therefore, all corner frequencies should be identical aside from
mismatch. The result of this programmable filter is a tighter bandpass filter, with a corner frequency roughly half of the original corner frequency.(b) Frequency
response for this programmable filter with ten bandpass elements exponentially spaced in frequency. The ripples on both curves show the location of these bandpass
elements. We show an initial programmed frequency response, where the weights are nearly equal, and a second programmed frequency response to program an
additional notch in the filter’s response. We obtain similar frequency responses generated by our Spectre simulation model used for simulating floating-gate circuits.

TABLE I
WEIGHT VALUES USED IN PROGRAMMABLE FILTER TO OBTAIN THE RESPONSE INFIG. 10(a)

Position

Position

the more conservative the next injection will be and the further
the device will be from the target current. However, choosing
a too high will cause the calculation to give a that will
overshoot the target value.

After the injection pulse in step two is performed, we can
then extract the actual for the device. Because we know
where the device ended up () and we knew where the device
started , the term can be derived from (10). With this,
we can now calculate the correct to take us to the wanted
programmed channel current. In the programming of the device,
we backed the calculated off slightly to guarantee that the
target current was not overshot. The last step is repeated until
we reach the desired current in the device.

C. Experimental Data Programming for Memory Cells

The programming results from a 1.2-m MOSIS process.
A 2 4 array of floating gates was used for this experi-
ment. The operation voltage for the chip was 3 V. For pro-
gramming, 8 V was used to allow significant injection in this
process to occur. During programming, the drain voltage was
held at 5 V during the current measurements for system oper-
ation with a 3-V supply. The timing used for injection was
2 s. This value was chosen only to insure no timing issues
in the test environment. There is no reason that fastvalues
cannot be used, and future revisions of the test setup include
on-board timing circuits to insure constant timing at faster
speeds. These fast speeds are critical to programming mass

98 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 1, JANUARY 2001

production or large arrays of floating gates. Fig. 9 shows an
attempt at programming four devices in the array to different
values.

V. THE FOURIER PROCESSOR

In this section, we show an example of this programmable
filter’s operation. First, we look at the frequency response of a
single C bandpass element, which is shown in Fig. 10(a). We
obtain this bandpass response by adjusting the bias voltages
and such that the high-pass and low-pass corner frequencies
are nearly equal.

Next, we set all the filter’s frequency taps to identical bias
voltages and program the floating-gate weights to generate an
interesting bandpass response. With this topology and constant
bias voltages, we can program many arbitrary filters of second
order; using different topologies and using feedback connec-
tions will allow any desired filter function. Experimentally, we
found a 15% difference in corner frequencies due to mismatch
in the bias transistors. This current chip has a linear change in
bias voltages because we connect neighboring biases with re-
sistive connections. We programmed the weights to the pattern
shown in Table I.

The floating-gate values did not change throughout our ex-
periment. Typically, we find a small initial change in the first
24 h due to detrapping (approximately an identical 10 mV for
each device), after which the gate charge remains constant over
the entire duration of these experiments. Since we use differen-
tial weights, any constant detrapping will not affect the filter’s
transfer function.

We show the frequency response of individual bands multi-
plied by their weighted outputs for constant effective weights.
Fig. 10(a) shows experimental measurements from our pro-
grammable Fourier filter. The result of this programmable filter
is a tighter bandpass filter, with a corner frequency roughly half
of the original corner frequency. The floating-gate devices used
for the multiplication were built with ; therefore, the
devices were biases near threshold with an average bias current
of 1 A (total current was 20.58A). We found that dynamics
of the multipliers did not affect the filter transfer function, and
that the harmonic distortion is limited by the multipliers, and
not the bandpass filters.

Fig. 10(b) shows the frequency response for a programmable
filter with ten bandpass elements that are now exponentially
spaced in frequency instead of nearly identical frequencies.
For the initial frequency response, we used an exponential
spacing with nearly identical weight values at each tap. We
can see the exponential spacing of these bandpass elements by
looking at theripples on the initial frequency response. We
also show a second programmed frequency response, where
we programmed a additional notch in the spectrum of this
initial filter. In current versions of this programmable filter,
the parameters of each bandpass element are programmable,
and therefore we can build our programmable filters utilizing
bandpass filters with an arbitrary spacing.

We have developed simulation models of this circuit to as-
sist in developing future revisions of this circuit. We recently

presented a methodology for simulating floating-gate circuits in
Cadence’s simulator, Spector, using a modified EKV MOSFET
model [3]. The frequency responses that we obtain from this
simulation model agree closely with experimental results.

REFERENCES

[1] P. Hasler, B. A. Minch, and C. Diorio, “Adaptive circuits using pFET
floating-gate devices,” inProc. 20th Anniv. Conf. Advanced Research in
VLSI, Atlanta, GA, March 1999, pp. 215–229.

[2] P. Hasler, M. Kucic, and B. A. Minch, “A transistor-only circuit model of
the autozeroing floating-gate amplifier,” inProc. Midwest Conf. Circuits
and Systems, Las Cruces, NM, 1999.

[3] A. Low and P. Hasler, “Cadence-based simulation of floating-gate cir-
cuits using the EKV model,” inProc. Midwest Symp. Circuits and Sys-
tems, Las Cruces, NM, 1999.

[4] B. A. Minch and P. Hasler, “A floating-gate technology for digital
CMOS processes,” inProc. Int. Symp. Circuits and Systems, Orlando,
FL, 1999.

[5] R. Sarpeshkar, R. F. Lyon, and C. Mead, “A low-power wide-linear-
range transconductance amplifier,”Analog Integr. Circuits Signal
Process., 1997.

[6] C. Mead,Analog VLSI and Neural Systems. Reading, MA: Addison-
Wesley, 1989.

[7] P. Hasler, B. A. Minch, and C. Diorio, “An autozeroing floating-gate
bandpass filter,” inProc. IEEE Int. Symp. Circuits and Systems, Mon-
terey, CA, 1998.

[8] P. Hasler,Foundations of Learning in Analog VLSI. Pasadena: Cali-
fornia Institute of Technology, Feb. 1997.

[9] P. Hasler and J. Dugger, “Correlation learning rule in floating-gate pFET
synapses,” inProc. Int. Symp. Circuits and Systems, Orlando, FL, 1999.

[10] B. A. Minch, “Multiple-input translinear-element log-domain filters,”
IEEE Trans. Circuits Syst. II, vol. 48, pp. xxx–xxx, Jan. 2001.

[11] P. Hasler, C. Diorio, and B. A. Minch, “A four-quadrant floating-gate
synapse,” inProc. IEEE Int. Symp. Circuits and Systems, Monterey, CA,
1998.

[12] Y. Tsividis, M. Banu, and J. Khaury, “Continuous-time MOSFET-C fil-
ters in VLSI,” IEEE Trans. Circuits Syst., vol. CAS-33, no. 2, 1986.

[13] S. T. Dupuie and M. Ismail, “High frequency CMOS transconductors,”
in Analogue IC Design: The Current-Mode Approach, C. Toumazou, F.
J. Lidgey, and D. G. Haigh, Eds. London, U.K.: Peregrinus, 1990, pp.
181–238.

[14] R. Harrison, P. Hasler, and B. A. Minch, “Floating-gate CMOS analog
memory cell array,” inProc. Int. Symp. Circuits and Systems, Monterey,
CA, 1998.

[15] R. R. Harrison, J. A. Bragg, P. Hasler, S. Deweerth, and B. A. Minch,
“A CMOS programmable analog memory cell array using floating-gate
circuits,” IEEE Trans. Circuits Syst. II, vol. 48, no. 1, pp. xxx–xxx, 2000.

[16] P. Hasler, C. Diorio, B. A. Minch, and C. A. Mead, “Single transistor
learning synapses,” inAdvances in Neural Information Processing Sys-
tems 7, G. Tesauro, D. S. Touretzky, and T. K. Leen, Eds. Cambridge,
MA: MIT Press, 1995, pp. 817–824.

Matt Kucic received the B.S. degree in electrical engineering from the Georgia
Institute of Technology (Georgia Tech), Atlanta, in 1999 and the M.S. degree
in electrical engineering from the Integrated Computational Electronics Labo-
ratory of Georgia Tech in 2000. He is currently pursuing the Ph.D. degree in
electrical and computer engineering from the same university.

His research interests include cooperative analog–digital signal processing,
floating-gate devices, circuits, and systems, and analog signal processing for
RF design.

AiChen Low received the M.S. degree in electrical and computer engineering
from the Georgia Institute of Technology, Atlanta, in 2000.

She is currently employed by Texas Instruments, Incorporated, NH.

KUCIC et al.: A PROGRAMMABLE CONTINUOUS-TIME FLOATING-GATE FOURIER PROCESSOR 99

Paul Hasler (S’87–A’97–M’01) received the B.S.E.
and M.S. degrees in electrical engineering from Ari-
zona State University,Tempe, in 1991 and the Ph.D.
degree in computation and neural systems from
the California Institute of Technology, Pasadena, in
1997.

He is currently an Assistant Professor in the
Department of Electrical and Computer Engi-
neering at the Georgia Institute of Technology. His
research interests include low-power electronics;
mixed-signal integrated circuits and systems; the use

of floating-gate MOS transistors to build adaptive information processing sys-
tems and “smart” sensor interfaces; the physics of deep submicrometer devices
or floating-gate MOS devices; and analog VLSI models of neurobiological
learning and sensory information processing.

Dr. Hasler received an NSF Career Award in 2001 and the IEEE Electron
Devices Society’s Paul Rappaport Award in 1996. He is active in the IEEE
as a Cochair of the Atlanta section of the IEEE Electron Devices Society, as
a Reviewer for IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS and IEEE
TRANSACTIONS ONNEURAL NETWORKS, and as Cochair for special sessions in
the IEEE International Symposium on Circuits and Systems in both 1998 and
1999.

Joe Neff,photograph and biography not available at the time of publication.

