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We study periodically modulated bistable dynamic ele�
ments subject to Gaussian noise and a symmetry�breaking
DC signal� The skewing of the bistable potential function
by the DC signal leads to the appearance of even multiples
of the drive frequency in the output power spectral density�
The spectral amplitudes of all the harmonics are found to
exhibit maxima as functions of the noise statistics and the
DC signal	 the maxima can be shown to depend on match�
ings of characteristic deterministic and stochastic time scales�
A phenomenological description based on a generic bistable
system is followed by actual perturbation calculations of the

rst two spectral amplitudes for a real system� a Josephson
junction shorted by a superconducting loop �the mainstay
of the rf SQUID�� This behavior underlies a recently pro�
posed �frequency�shifting� technique for circumventing de�
tector noise limitations which would otherwise constrain the
detection of very low�amplitude signals�
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I� INTRODUCTION

Periodically modulated stochastic systems have re�
ceived considerable attention recently ���� these systems
which can generally be described by the �particle�in�

potential� paradigm	 
x � ��U�x�
�x � S
t� � N 
t�	 exhibit

a richness of noise�mediated resonance behavior in the
spectral measures 
e�g� the output signal�to�noise ratio	
SNR� of the response� In these systems	 S
t� and N 
t�
denote a deterministic signal 
often taken to be time�
periodic� and noise 
usually taken to be Gaussian�� The
potential function U 
x� is even 
often bistable�	 resulting
in an output power spectral density 
PSD� consisting of
oddmultiples of the signal frequency � superimposed on a
Lorentzian noise background� However	 real�world man�
ifestations of these systems are often asymmetric	 with
the dynamics containing even and odd functions of the
state variable� The simplest route to asymmetry in the
above dynamics is to incorporate a small DC term x�
into the signal S
t� or	 equivalently	 a term �xx� into
U 
x�� The output PSD of asymmetric systems contains
contributions from all the harmonics of the periodic sig�
nal frequency� hence	 the appearance and change in the

magnitudes	 as a function of x�	 of peaks at even mul�
tiples of � 
this would	 of course	 be accompanied by a
concommitant change in the spectral amplitudes at odd
multiples� could be taken as quantifying measures of the
asymmetry�producing signal� Asymmetric dynamic sys�
tems of the above form have been studied ��� with Gaus�
sian white noise� The spectral amplitudes of the har�
monics of the periodic signal	 in the output PSD	 pass
through maxima as a function of noise intensity� It has
been suggested that this behavior might be a manifesta�
tion of the well�known Stochastic Resonance 
SR� e�ect
at higher orders ����
In this work we present a systematic treatment of

the resonant behavior of the spectral amplitudes at k�

k � �� �� ������ The resonant behavior depends on a new
control parameter	 the degree of asymmetry	 and can be
interpreted at all orders k	 via a matching of determinis�
tic and stochastic time scales reminiscent of recent inter�
pretations of SR in integrate��re model neurons ��� and
bistable dynamic systems ��� as a bona �de resonance� We
start with a purely deterministic phenomenological the�
ory that shows the occurrence of multiple maxima in the
spectral amplitudes in a generic asymmetric system� we
then introduce characteristic stochastic time scales 
these
critically depend on the asymmetry	 as well as the spec�
tral characteristics of the noise� and argue that a precise
and elegant matching of these time scales must occur for
all k for there to be resonance behavior in the spectral
amplitudes of the harmonics when the noise is turned
on� The phenomenological development is followed by
a theoretical computation of the �rst two spectral am�
plitudes 
k � �� �� on a rf SQUID loop� results in line
with recent experimental observations are obtained	 and
the resonance behavior as a function of the noise vari�
ance 
for �xed asymmetry� is also discussed� In a recent
publication ��� we have shown numerical simulations of
the higher harmonic behavior in the rf SQUID loop to
O
k � �� and speculated that these results could be ap�
plied to carrying out detection of very weak DC signals in
nonlinear sensors that are constrained by noise in well�
de�ned bandwidths� we discuss these points in greater
detail in the conclusion�

�



II� PHENOMENOLOGICAL DESCRIPTION

We start with a simple phenomenological model of a
purely deterministic situation� Consider a periodic signal
A sin�t applied to a generic bistable potential U 
x�� The
signal is assumed to be of amplitude barely su�cient to
achieve switching between the two stable states of the
potential	 which we assume to be asymmetric� We shall
be concerned only with the dichotomous output f
t� over
a single period T of the signal	 where we de�ne

f
t� � f� � � t � �

� � � � t � T� 
��

Clearly	 the residence times � and T�� in the two stable
states are functions of the asymmetry of the system� for
a symmetric potential � � T��� We now Fourier analyse
f
t��

f
t� �
a�
�
�

�X
k��

fak cos k�t� bk sin k�tg� 
��

where we readily compute	

a� � �

T

Z T

�
f
t�dt �

�f��

T

ak � �

T

Z T

�

f
t� cos k�tdt �
f�
�k
sin k��

bk � �

T

Z T

�
f
t� sin k�tdt �

f�
�k

�� cos k����

Clearly	 for a symmetric potential 
� � T���	 only the
odd multiples of � will be present� From the above ex�
pressions	 the spectral amplitude at k� is given by

Mk �
f�
�k

�
sin� k�� � 
�� cos k�������� � �f�

�k
sin

k��

�
�


��

where we will be interested in the absolute value only� A
plot 
�gure �� of jMkj over the interval T�� � � � T
reveals multiple maximawith the number of maxima be�
ing k�� and 
k � ���� for even and odd k respectively�
The locations of these maxima are readily found from the
condition k�� � n� 
n odd�� We observe that the funda�
mental 
k � �� has a single maximum for � � �� � T��
corresponding to the symmetric case	 the �rst harmonic

k � �� has a single maximum for � � �� � �T��	 the
k � � harmonic has maxima at � � �� � �T��� T��	
the k � � harmonic at � � �� � �T��� �T��	 and so
on� Note 
see �gure �� that the spectral amplitudes with
odd k have a maximum at � � T�� 
corresponding to
the symmetric potential case�	 while ones with even k
vanish in this case�
The extension to the noisy case is achieved by introduc�

ing the mean residence times htli and htri in the left and

right states of the potential 
the left well has the shal�
lower minimum�� For convenience	 these may be com�
puted in the absence of the periodic signal� the presence
of the signal a�ects these mean times only slightly ���
for weak signal amplitudes� We then postulate that to
achieve a maximum in a given spectral amplitude jMkj

assuming the output to be approximately periodic�	 we
must achieve htri � �k and htli � T � htri� For the �rst
few harmonics this yields immediately htli � T�� � htri
for k � � 
this is the classical frequency�matching con�
dition for stochastic resonance�	 htli � T�� and htri �
�T�� for k � �	 etc� In fact	 we �nd a precise match�
ing of stochastic and deterministic time scales for every
frequency k� whenever the spectral amplitude jMkj pos�
sesses a maximum� At frequency k� we may write the
general conditions for these �resonances� as�

htli � n

k

T

�
� htri � T � htli� htli

htri �
n��k

�� n��k
� 
��

where n is odd and � � n � k� This leads to an elegant
pattern of numbers 
shown in Table � for k � �� �� � � � � ��
which exposes a precise matching of stochastic 
the mean
residence times� and deterministic 
the signal period�
time scales that must exist to obtain the 
multiple� res�
onances 
as a function of asymmetry� at the frequencies
k� when the system is noisy� We now explore the reso�
nance behavior in a speci�c system	 the rf SQUID loop�

III� THE RF SQUID LOOP

The standard rf SQUID loop is a superconducting loop
into which a single Josephson junction has been inserted
���� The dynamics are multistable with the magnetic
�ux through the superconducting loop being quantized
in units of the �ux quantum �� � h��e� In the presence
of the junction	 the magnetic �ux � through the loop	 in
response to an applied time�dependent magnetic �ux �e	
evolves according to the dynamics ���	


LC
d�

dt�
� �L

d

dt
� ��

�
t�

��
�

�s
��
sin
���
t�

��
�
�e
t�

��
� 
��

where L and C are the loop inductance and capacitance	
�L � L�RJ 
RJ being the normal state resistance of the
junction�	 and the parameter �s � ��Lic��� 
ic is the
junction critical current� controls the hysteretic behav�
ior of the device� the SQUID output is hysteretic for
�s 	 �	 i�e�	 the steady�state � vs� �e curves are multi�
valued� In most practical applications	 the SQUID loop is
shunted by a low resistance in order to remove hystere�
sis in the voltage�current characteristic of the junction
���� this process e�ectively renders the link capacitance
C extremely small so that the inertial term in 
�� may be
neglected� Transforming to the normalized state variable

�



x
t� � �
t����	 we may write the dynamics 
�� in the
�particle�in�a�potential� form	

�L 
x � �
U 
x�

x

� �
t� � y
t� 
��

where the dot denotes time�di�erentiation	 and the po�
tential function

U 
x� �
�

�

x� x��

� � �s
���

cos ��x� 
��

is multistable when �s 	 �sc	 where �sc � � for x� � ��
We have expressed the 
normalized� external �ux �e���

as the sum of three terms� a symmetry�breaking DC
term x� 
which we incorporate into U 
x��	 an AC term
�
t� � A sin
�t � �� with � being a 
often assumed ran�
dom� phase factor	 and a noise term y
t�� Typically the
time constant �L � ����� seconds	 so that with the ex�
ception of the 
internal� thermal noise	 which is assumed
negligible for the purposes of this paper	 any externally
applied noise will usually have a bandwidth far smaller
than the SQUID bandwidth �L

��� This is even more
the case in experimental setups wherein a resistive shunt
must often be placed across the SQUID to �lter out high�
frequency noise� The LR circuit formed by the shunt
resistance and the loop inductance results in a low�pass
�lter which decreases the input noise bandwidth even
further ���� Hence we must take y
t� to be zero�mean
Gaussian exponentially correlated noise� it may be mod�
eled via a white�noise�driven Ornstein�Uhlenbeck 
O�U�
process ����


y � ����y � 
F 
t�� 
��

where F 
t� is zero�mean �white� noise with autocorre�
lation hF 
t�F 
t � s�it � �
s� and � is the correlation
time of the �colored� noise y
t�� Then	 one easily veri�es
��� that y
t� has zero mean and autocorrelation function
hy
t�y
t � s�it � hy�ie�jsj�� 	 whence the �white� limit	
corresponding to delta�correlated noise	 is realized when
� � �� The colored noise has variance hy�i � 
����

we re�iterate that y
t� has units of normalized magnetic
�ux��
It is convenient to pre�bias the SQUID loop so that the

potential 
��	 for �s 	 �	 is centrally bistable with possi�
ble outlying metastable states� This is accomplished ���
by incorporating a DC biasm�� 
m odd� in the potential�
we replace x� by x��m��� Assuming the signal and noise
to be very slow compared to the well�relaxation time 
the
standard adiabatic assumption�	 we may incorporate the
signal �
t� and the noise y
t� into the potential function

U 
x� as well	 writing 
�� in the form �L 
x � ��Ue�x�
�x

where the potential function Ue is now given by	

Ue
x
t�� �
�

�

x� x� � m

�
� y
t� � �
t��� � �s

���
cos ��x�


��

It is worthwhile to note that for the very small time con�
stants �L that characterize real SQUIDs	 the adiabatic
assumption is expected to be a very good one	 breaking
down for input signals or input noise with power at very
high frequencies 
approaching �L���� The thermal back�
ground noise in the sensor is indeed broadband ��� but far
smaller in magnitude than ambient environmental noise
that limits practical SQUIDs� The environmental noise
usually has a bandwith less than �L��� As already stated	
we neglect the thermal background noise throughout this
work� Finally	 we assume that the signal amplitude A is
too weak to allow switching between the stable states of
the potential to occur in the absence of the noise�
The �xed points of the e�ective potential may be com�

puted in the absence of the noise 
i�e� y
t� � �� by setting
�Ue

�x � � and solving the resulting transcendental equa�
tion via a perturbation expansion to leading order in x�
and �
t�� We then obtain

xu �
m

�
�
x� � �
t�

�� �s

���

for the central 
unstable� �xed point	 and	

x� �
m � �
�

�
x� � �
t� � ���

� � �s

x� �
m� �

�
�
x� � �
t� � ���

� � �s
� 
���

for the stable �xed points to the left 
x�� and right 
x��
of xu� We note that the above expressions are not valid in
the x� � ��� limit in which the central bistable structure
of the potential U 
x� disappears 
in fact	 the theoreti�
cal computations of the power in various harmonics also
break down in this limit�� The theoretical and simula�
tion results are identical for any odd m	 and are re�ected
about the vertical axis for ���� � x� � �� Any other
x� may be mapped into the range ���� � x� � ��� by
modifying m�
In �gure � we plot the potential U 
x� and its gradi�

ent �
�
�U
�x

the factor ��� is introduced for scaling conve�

nience in the �gure� for di�erent values of the nonlin�
earity parameter �s and the dc asymmetry x�� Clearly	
the 
generalized� inverse gradient function also represents
the input�output characteristic of the device� The central
bistable structure of the potential 
for �s 	 �	 x� � ��
is readily apparent� The intersection
s� of the gradient
term with the horizontal axis yield the extrema of the po�
tential and the multivalued	 hysteretic character of the
input�output characteristic 
picture the gradient func�
tion rotated �� degrees and �ipped� corresponds to the
bistable structure of the potential� The extrema of the
gradient correspond to the points of in�exion 
see 
���
below� of the potential� For the asymmetric case 
corre�
sponding to nonzero x��	 we observe a skewing of the po�
tential	 accompanied by unequal areas enclosed between
the gradient term and the horizontal axis� Although we

�



have shown only the central bistable regime of the po�
tential for a given �s it is clear that 
depending on the
magnitude of �s� we would	 in general	 obtain multiple
zeros of the gradient function	 corresponding to a multi�
stable potential�
SR	 de�ned in the conventional way via the maximum�

as a function of input noise power�in the output power
signal�to�noise ratio 
SNR� at the fundamental frequency
�	 has been observed in an experiment performed in ����
���� Two separate experiments carried out in ���� ���	���
have observed such resonance behavior in the spectral
amplitudes of higher harmonics 
including the even ones�
when the symmetry�breaking DC signal x� is present�
Numerical simulations that determined the output power
in the k � ��� harmonics of the SQUID model 
�� were
recently presented	 along with an approximate theoret�
ical computation of this output power for the k � �� �
harmonics ���� Very good agreement was found between
theory and numerical simulations� In what follows	 we
present a much fuller account of the theoretical calcu�
lation of the output power as well as new results which
provide a guide for using the resonance behavior depicted
in �gure � in practical nonlinear dynamic devices�

IV� THE SQUID LOOP AS A TWO�STATE

SYSTEM WITH ASYMMETRY

We now present an approximate theoretical calculation
of the �rst two spectral amplitudes in the output PSD�
Since �L � � 	 the SQUID may be assumed to remain
in its 
nonequilibrium� steady state	 making transitions

accompanied by the emission of a single �ux quantum�
only when the noise causes the currently occupied min�
imum to coincide with a point of in�exion that can be

calculated via ��Ue

�x� � �� A straightforward calculation
yields the locations of the points of in�exion generated
in place of the left and right minima when a transition
between states occurs�

xi� �
m� �
�

�
�

��
cos��
����

s �

xi� �
m � �

�
� �

��
cos��
����

s �� 
���

Thus	 the noise must achieve the values

yc��� � xi��� � x� � m

�
� �
t� �

�s
��
sin ��xi��� 
���

to accomplish switching� Therefore we model the SQUID
as a two�state system with a hysteretic input�output
characteristic having state probabilities p���
t� and mas�
ter equations


p� � W��p� �W��p�


p� � W��p� �W��p�� 
���

where p� � p� � � and Wik denotes the transition rate
from state i to state k� These rates are the approxi�
mate inverses of the mean passage times htli and htri
introduced earlier� The transition rates are computed by
solving ��� the �rst passage problem for the O�U process

underpinning the noise� between the values yc� and yc��
For W�� we assume the presence of an absorbing bound�
ary at yc�	 with yc� being the start point� Then we have	

W��
�� � T�� � �


��

Z yc�

yc�

ez
�����dz

Z z

��

e�z������dz� � ��
p
�

Z uc�

uc�

eu


���

A corresponding expression may be obtained for W���

W��
�� � T�� � ��

p
�

Z uc�

uc�

eu
�

 
�u�du� 
���

We have de�ned  
u� � �
� �� � erf
u�� and uc��� �

yc����

p
� � further	 we have	 for later notational conve�

nience	 set T�� � htli and T�� � htri� As expected	 for
x� � �	 we �nd yc� � �yc� and T�� � T��� The integrals
in 
��	��� may be expressed in terms of the imaginary
error function er�
z� � erf
iz��i and the generalized hy�
pergeometric function pFq 
a�� � � � � ap� b�� � � � � bq� z��

Z uc�

uc�

eu
�

 
�u�du �
�
�

�

p
�er�
u�� �F�

�
�� �� �� � ��u

�
�
u�

�
p
�

�uc�
uc�

�

To compute the PSD of the SQUID output	 we must
�rst solve the system 
��� for the state probabilities
p���
t�� Then	 the two�state dynamics that character�
ize the SQUID may be well�approximated by the global
probability density function

P 
x� t� � p�
t��
x � x��� � p�
t��
x � x���� 
���

where x���� � x��� jA�� are the locations of the minima
of the unperturbed potential 
��� The mean value hx
t�i
is obtained from

hx
t�i �
Z
xP 
x� t�dx � x��p�
t� � x��p�
t�� 
���

A general solution of 
��� is beyond the scope of this
paper� However	 we are interested in the spectral ampli�
tudes of the �rst two peaks 
k � �� �� in the output PSD�
Accordingly	 we are interested only in an expansion of
hx
t�i to include terms up to second order 
i�e� the k � �
harmonic��

hx
t�i �M� �M� cos
�t � ��� �M� cos
��t � ����


���

where ���� are phases that may have random compo�
nents	 and the amplitudes Mi are as yet undetermined�
The autocorrelation function of the output is	

�



K
s� � hhx
t�x
t� s�iit �� �

T

Z T

�

hx
t�ihx
t� s�idt


���

in the s � � limit	 T � ���� being the signal period�
Using 
��� we readily �nd

K
s� �M�
� �

M�
�

�
cos�s �

M�
�

�
cos ��s� 
���

so that the powers at the frequencies � and �� in the
output PSD are	 respectively	 M�

��� and M�
����

We solve the system 
��� after expanding the tran�
sition rates to O
A��� Speci�cally	 we de�ne uc���� �
uc��� j��t��� and set

uc��� � uc���� � ��
t�� ��
t� � A� sin
�t� ��� 
���

with A� � A�
p
�hy�i being a natural 
and convenient�

perturbation expansion parameter� we expect the theory
to be valid for A� � � and within the realm of the adi�
abatic approximation 
see above�� We now expand the
transition rates as

W�� � �� � ���
�
t� � ���

��
t�

W�� � �� � ���
�
t� � ���

��
t�� 
���

the expansion coe�cients being obtained through a
straightforward expansion of the transition rates�

�� � T���
��� �� � �T

�
���

T �
���

� �� � ��
�

�
T ��

���

T �
���

� �T
��
���

T �
���

�

�� � T���
��� �� � �T

�
���

T �
���

� �� � ��
�

�
T ��

���

T �
���

� �T
��
���

T �
���

�

���

where	

T��� � T�� j���t��� � ��
p
�

Z uc��

uc��

eu
�

 
u�du

T �
��� � 
T��


��
j���t��� � ��

p
�
n
eu

�

c�� 
uc���� eu
�

c�� 
uc���
o

T ��
��� � 
�T��


���
j���t��� � ��

p
�
n
uc��e

u�
c�� 
uc���� uc��e

u�
c�� 
uc���

o

T��� � T�� j���t���� ��
p
�

Z uc��

uc��

eu
�

 
�u�du

T �
��� � 
T��


��
j���t��� � ��

p
�
n
eu

�

c�� 
�uc��� � eu
�

c�� 
�uc���
o

T ��
��� � 
�T��


���
j���t��� � ��

p
�
n
uc��e

u�
c�� 
�uc���� uc��e

u�
c�� 
�uc���

o
� 
���

We now formally integrate the �rst equation in 
���	
ignoring the initial condition term which vanishes in the
t�� limit�

p�
t� � g��
t�

Z t

t�

W��
t
��g
t��dt�� 
���

where

g
t� � exp
	Z t


�� ���
t�� � ����
t���dt�


� 
���

with � � �� � ��� � � �� � ��� � � �� � ��� Performing
the integration in 
��� and expanding the result to O
A���
we �nd	

g
t� � e�t
	
�� �A�

�
cos
�t � �� � �A��

��
sin
��t� �� �

��A��

���
co

g��
t� � e��t

	
� �

�A�

�
cos
�t� �� �

�A��

��
sin
��t � �� �

��A��

���
cos

where � � ���A����� Substituting these expressions into

���	 we may carry out the integration	 with t� � ���
After considerable simpli�cation we �nally arrive at

p�
t� �
��
�
� A� ��� � ���

�
�� � ������
cos
�t � �� � ��

�
A��

���

P �

c � P �
s �

��� cos
��t� �� � �� �
A��

���
P�� 
���

where � is the 
in general	 random� initial phase and	

�� � tan��
����� �� � tan��
Ps�Pc��

Pc � 
�� � ������
�
�
���

� � ������ � ���
��� � �����
�

��
�� � �����

	
����

�

�
� ����� � ����



Ps � 
�� � ������

�
��
���

� � ������� ��
��� � �����
�

��
�� � �����

	
����� � ����� � ���

�

�� � ���




P� � ���
� � �����
�

� ��

�� � ��

���

� � ������

Then	 using 
��� and 
���	 we arrive at the expressions

M� � A�
x�� � x���
��� � ���

�
�� � ������
�

M� �
A��

���

x�� � x���
P

�
c � P �

s �
���� 
���

We have already shown ��� that the expressions 
���
agree very well with direct numerical simulations of the
system 
�� and 
��	 as well as the two�state system 
����
In particular	 we have seen that the two�state approxi�
mation that is widely used in adiabatic treatments of SR
��	��� is a very good approximation to the SQUID dy�
namics because of the essentially steady�state nature of

�� predicated by the small time constant �L� Hence	 we
have been able to treat the problem as a �rst passage
problem of the noise rather than the full dynamics 
��

the latter problem would be analytically intractable��
We now analyse the expressions 
��� under di�erent cir�
cumstances�

�



In �gures � and � we show the powers 
computed via
the theoretical expressions 
���� M�

��� and M
�
� �� in the

�rst two peaks 
k � �� �� in the output PSD as func�
tions of the DC o�set x� and the input noise parameter

�� The known signal amplitude is held constant	 as is
the SQUID nonlinearity parameter �s� this results in a
constant ratio A�!U�	 where !U� is the height of the
potential barrier of the central bistability of our prob�
lem	 in the absence of any skewing 
i�e� for x� � ���
In M�

� �� 
the SQUID output power at frequency �� the
basic SR e�ect is readily visible� for x� � �	 the power
displays a clear maximumas a function of the input noise
power� The power in the �rst harmonic	M�

���	 vanishes
as x� � � as expected� However	 for x� 	� � this power	
like the power at the fundamental	 displays a maximum
as a function of the input noise power� also	 a maximum
is seen as a function of x�	 and the location of this maxi�
mumdepends on the noise power� These results have also
been demonstrated in bistable systems driven by white
noise ���� The curves do not display a strong dependence
on �� however	 the adiabatic approach does require that
f � �

�	 � ���� ���
L �

It is important to note that the central bistable struc�
ture of the potential disappears for x� � ���� therefore	
close to this point the bistable model upon which our
theoretical calculation is based begins to break down� In
��� we performed numerical computations of the spec�
tral amplitudes M�

k�� up to k � �� We found that the
bistable theory agreed well with numerical simulations
of a SQUID with a two�state��ltered output	 even for x�
close to ���� The bistable theory also agrees well with nu�
merical simulations of a SQUID loop with an un�ltered	
analog output	 except for k � � with x� approaching ����
For this case the bistable theory	 by ignoring the motion
within the deepest 
and approximately parabolic� poten�
tial well	 underestimates the output power at frequency
�	 although it does accurately estimate the power at ��	
which arises primarily from inter�well motion�

V� DISCUSSION

It is worth starting this section by re�iterating that the
theory of this paper has been shown ��� to be in excel�
lent agreement with numerical simulations on the SQUID
equations 
�� and 
��� In fact	 the matchings 
�� of de�
terministic and stochastic time scales that characterize
this higher�order resonant behavior have been shown to
hold true 
within simulation tolerances� for the particular
example system 
the SQUID loop� considered here�
What are the limits of validity of the theoretical cal�

culations presented here" In classical SR treatments
��	�	��� the noise y
t� is taken to be white and a per�
turbation modi�cation of the Kramers rate used to com�
pute the transition rate� Note that the Kramers rate
in its �Arrhenius� form ��� is	 itself	 an approximation

strictly valid for low noise intensity and large potential
barrier heights� similar restrictions still apply to the sys�
tem at hand	 if one wishes to describe the dynamics via
a Markov process 
see below�� The remaining approxi�
mations that we have employed are the perturbation ex�
pansion 
��� in powers of A� and the adiabatic approx�
imation which assumes the AC bias signal frequency to
be the slowest rate in the dynamics� Both these approx�
imations are well�satis�ed in the theory and simulations
presented here� In fact	 we would expect the theory to
yield acceptable results even when the periodic signal is
slightly supra�threshold	 i�e� when deterministic switch�
ing is possible	 as long as the noise has values such that
A� � �	 in this case the system is apt to follow the behav�
ior of the phenomenological two�state system discussed
in section �� However	 when the input signal and#or
noise terms become too large	 the SQUID is able to make
excursions to outlying minima of the potential 
�� and
the system can no longer be approximated by centrally
bistable dynamics� in this case the theory breaks down�
For the adiabatic criterion to be satis�ed we should have
f � �L

��� ���� Simultaneously	 the system and signal
parameters should be chosen so that f �W���W��	 else
our approach of assuming the SQUID to be in its steady
state and essentially tracking the noise dynamics 
via the
computation of the transition rates in 
���� breaks down�
Certainly	 the �rst of these conditions holds true for the
frequencies considered in this work	 and for those that are
likely to be encountered in many practical applications�
When the signal frequency exceeds the noise bandwidth	
the adiabatic approximation begins to unravel� however	
for signal frequencies not too far removed from the noise
bandwidth	 the theory can be shown to yield the correct
qualitative behavior	 although agreement such as that
reported in ��� will not be achieved in this case�
The above comments are directly connected to the va�

lidity of the representation of the SQUID dynamics via
a dichotomous Markov process� Typically	 the residence
times distribution for the process may be computed di�
rectly 
see e�g� ���� from the probability density function

���� For a Markov process	 the residence times distri�
bution is expected to be a decaying exponential at long
times	 at least� In general	 one would realize such dy�
namics if the transition rates Wik were constant� The
adiabatic assumptions are	 therefore	 critical to the suc�
cess of the Markov approximation� by assuming the sig�
nal frequency to be much smaller than other character�
istic system frequencies	 we are assuming the transition
rates to be quasi�stationary� At the same time	 successive
transitions or �spikes� should not be correlated� assum�
ing very weak 
as quanti�ed in 
���� signal amplitudes
and weak 
compared to the barrier height� noise inten�
sities assures this to be the case	 even though the noise
correlation time is typically greater than the SQUID con�
stant �L 
the exception being thermal noise�� When the
aforementioned conditions are met	 the dynamics are ap�

�



proximatelyMarkovian� we have already seen ��� that the
approximations provide highly accurate representations
of the actual dynamics�
The results of this paper 
which explain very well the

experimental observations of ���� and ����� should be ap�
plicable to generic bistable and 
in special situations such
as described here in connection with the SQUID� multi�
stable systems with broken symmetry� Many nonlinear
detectors su�er from signi�cant low�frequency noise limi�
tations 
the noise may be internal	 e�g� ��f 	 or external��
By carefully selecting the frequency � of the known bias
signal	 the detection may be shifted to a more accept�
able part of the frequency spectrum� Then	 in a detector
that has an a priori symmetric potential	 the appearance
of the even multiples of � in the output PSD	 together
with the change in the spectral amplitudes Mk in the
presence of the symmetry�breaking signal 
which may be
DC	 or have a single frequency in which case one looks at
the properties of combination tones in the output PSD�	
may be used to detect or estimate the weak target sig�
nal� This idea was	 in fact	 demonstrated in laboratory
experiments carried out with a specially designed �SR�
SQUID� ���� assuming only internal white noise	 as well
as a conventional rf SQUID ���� using externally applied
correlated noise� In actual remote sensing applications	
one often knows a priori the spectral characteristics of
the background noise� In this case	 it is clearly of bene�
�t to be able to adjust the potential barrier height !U�

and#or the amplitude of the known bias signal so as to
achieve the highest possible sensitivity� In fact	 the peak
powers in �gures � and � increase as the ratio A�!U� in�
creases� hence	 for optimum detection	 it might be advis�
able to adjust the bias signal amplitude A such that it is
almost at the threshold for deterministic switching	 with
the barrier height already selected to maximize the out�
put SNR� The barrier height may be adjusted by either
fabricating a SQUID with a certain nonlinearity param�
eter �s 
in turn	 this parameter depends on the junction
critical current Ic and the loop inductance L� or by in�
troducing an asymmetrizing DC �ux x� as discussed in
this paper� It is important to note that theory predicts
the best possible output SNR at the fundamental for zero
barrier height	 corresponding to the linear system case�
however	 other practical considerations may render this
mode of detection impractical in real devices	 e�g� the
rf SQUID detector wherein background noise and a low
slew�rate make detection of very weak signals via conven�
tional techniques di�cult	 in the presence of even moder�
ate amounts of noise� For practical applications it would
be desirable to be able to compute a priori the ROCs

Receiver Operating Characteristics� of the sensor ����
which are plots of detection vs� false alarm probabilities
for di�erent detection thresholds� This calculation is cur�
rently in progress� Note also that the frequency shifting
idea that is the focus of this paper applies exclusively to
nonlinear systems� a linear sensor	 for example	 could not

exploit this phenomenon�
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TABLE I� Mean residence time ratios which maximize the
spectral amplitude at frequency k��
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FIG� �� Spectral amplitudes
at frequency k�� k � �� �� � � � � � in the output PSD for the
purely deterministic case� as computed from the phenomeno�
logical theory �eqn� ���� with f� � �� The horizontal scale
represents the degree of asymmetry as quanti
ed by the ratio
��T �
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FIG� �� Potential U�x� �solid curve� and its derivative
U ��x� �dashed curve� scaled by ��� for plotting convenience�
for �a� � � �� x� � 
� �b� � � �� x� � 
��� �c� � � �� x� � 
�
�d� � � �� x� � 
���
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FIG� �� Contour plot of SQUID output power M�

� �� at the
driving frequency � vs� asymmetrizing DC signal x� and noise
parameter �in units of sec��� ��� Other parameters� �s � ��
A � 
��� � � �
� � � 
�
�� m � �� Numbers within contour
plot mark the maximum and minimum power points �in dB��
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FIG� �� Contour plot of SQUID output power M�

� �� �in
dB� at frequency �� vs� asymmetrizing DC signal x� and
noise parameter �in units of sec��� ��� Other parameters as
in Fig� �� Numbers within contour plot mark the maximum
and minimum power points �in dB��
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