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We introduce a dynamical readout description for a wide
class of nonlinear dynamic sensors operating in a noisy envi-
ronment. The presence of weak unknown signals is assessed
via the monitoring of the residence times in the metastable
attractors of the system, in the presence of a known, usually
time-periodic, bias signal. This operational scenario can mit-
igate the e�ects of sensor noise, providing a greatly simpli�ed
readout scheme, as well as signi�cantly reduced processing
procedures. Such devices can also show a wide variety of
interesting dynamical features. This scheme for quantifying
the response of a nonlinear dynamic device, has been imple-
mented in experiments involving a simple laboratory version
of a 
uxgate magnetometer; we present the results of the ex-
periments and demonstrate that they match the theoretical
predictions reasonably well.

05.40.+j, 02.50.Ey, 85.25.Dq

I. INTRODUCTION

A large class of dynamic sensors have nonlinear input-
output characteristics, often corresponding to a bistable
potential energy function that underpins the sensor dy-
namics. These sensors include magnetic �eld sensors, e.g.
the simple 
uxgate sensor [1,2] and the Superconduct-
ing Quantum Interference Device (SQUID) [3], ferroelec-
tric sensors [4], and mechanical sensors [5], e.g. acoustic
transducers, made with piezoelectric materials. In many
cases, the detection of a small dc or low frequency tar-
get signal is based on a spectral technique [1,2] wherein
a known periodic bias signal is applied to the sensor to
saturate it, driving it very rapidly between its two lo-
cally stable attractors which correspond to the minima
of the potential energy function, when the attractors are
�xed points. Usually, the amplitude of the bias signal
is taken to be quite large, often above the determinis-
tic switching threshold which is itself dependent on the
potential barrier height and the separation of the min-
ima, in order to render the response largely independent
of the noise. In this con�guration, the switching events
between the stable attractors are controlled by the sig-

nal. In the presence of background noise, and absent
the target signal the power spectral density of the sys-
tem response contains only odd harmonics of the bias
signal which we assume to be time-sinusoidal. For the
case of subthreshold bias signals, one may analyse the
response in the context of the Stochastic Resonance (SR)
scenario [6] wherein the spectral amplitude of each har-
monic achieves a maximum for a certain noise intensity;
the threshold crossing events are noise-controlled, but a
synchrony of sorts [7] between the mean crossing rate and
the signal frequency is obtained for a critical noise inten-
sity. The e�ect of an additional target dc signal is, then,
to skew the potential, resulting in the appearance of fea-
tures at even harmonics of the bias frequency ! [8] in the
system response. For the case of subthreshold bias sig-
nals, the SR scenario for this case has been analysed for
prototype bistable systems [8]. The spectral amplitude at
2! is zero unless the asymmetrizing dc signal is present,
hence the appearance of power at 2! and its subsequent
analysis has been proposed as a detection/quanti�cation
tool for the target signal [8], given that ! is known a
priori. In practice, a feedback mechanism is frequently
utilized for reading out the asymmetry-producing target
signal via a nulling technique [1{3].
The above readout scheme has some drawbacks. Chief

among them is the requirement of large onboard power
to provide a high amplitude, high frequency bias signal
for the case when one uses a suprathreshold bias signal.
The feedback electronics can also be cumbersome and in-
troduce their own noise-
oor into the measurement and,
�nally, a high-amplitude, high-frequency bias signal often
increases the noise-
oor in the system. The power con-
straints could be mitigated somewhat by utilizing a low
amplitude, low frequency bias signal, and allowing the
crossing events to be largely noise-controlled; this is the
SR scenario. With moderate amounts of noise, this sce-
nario could work, the primary concern being obtaining an
appreciable number of crossing events in the limited time
one has to observe the target signal. Since the bias signal
is controllable one could, in principle, adjust its ampli-
tude to obtain an adequate number of crossing events per
unit time, assuming that the noise 
oor and locations of
the stable minima of the potential energy function are be-
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yond control. If the crossing rate is (even approximately)
known in the absence of the bias signal, then the signal
frequency may be appropriately adjusted to yield opti-
mal performance [6,8]. In some situations involving high
noise intensity, one may not even need a bias signal, if
the noise is strong enough to yield an acceptable crossing
rate. This special case is intriguing; it a�ords the possi-
bility of operating the sensor (clearly under very speci�c
conditions) with minimal onboard power. This situation
was discussed earlier [9]. Clearly, however, any sensor
con�guration, particularly one with a subthreshold bias
signal, is very dependent on the conditions of the ex-
periment or the particular signal analysis task at hand.
The commonly used measure to describe SR, the signal-
to-noise ratio at the fundamental or a higher harmonic
frequency of the periodic bias signal, is not always the
most informative one from a signal analysis standpoint.
Rather, information-based measures [10] which can be
connected to the signal detection statistics may be more
useful; such a description has been rigorously obtained
in the SR scenario for a prototype system subject to a
small asymmetrizing dc target signal with a known time-
periodic bias signal, in gaussian background noise [11].
The above preamble delivers an outline of readout

schemes based on a computation of the power spectrum
or information transfer as an appropriate measure of the
system response. We propose here, a description of the
system dynamics which makes possible the use of a mea-
surement technique based on the system residence times
in its steady states [9]. For a two-state system, the resi-
dence time in one of the stable steady states, is de�ned as
the time elapsed between the �rst crossing of that thresh-
old and the �rst crossing of the other threshold. In the
presence of a noise background, the residence times in the
stable states have random components. The residence
time statistics in a bistable system were proposed for the
�rst time in [12] as a quanti�er for the SR phenomenon
which involves, as already mentioned, subthreshold driv-
ing signals. They have also been studied in a prototype
bistable model system [13]. Important features of the
residence times distributions are often seen in neurophys-
iological experimental data; it is widely believed that the
point process generated by successive \�ring" events con-
tains much relevant information about the stimulus that
lead to the �ring [14]. Under the appropriate conditions
on the spike train, most importantly a renewal character
corresponding to uncorrelated crossing events, [15] it is
possible to connect the \Inter-Spike Interval Histogram"
(the Residence Times Distribution, RTD, in the language
of this paper) to the output power spectral density. Here
we propose to use the crossing statistics [16] in order to
gain information on the presence of small unknown tar-
get signals in a nonlinear dynamic detector, taken to be
a two-state system for the remainder of this work.
We start by noting that absent any background noise,

and with a suprathreshold bias signal amplitude, one ob-
tains the same residence times in each stable state, with
two crossing events per period of the bias signal. With

a small (compared to the potential barrier height) target
signal, taken to be dc throughout this work, the potential
is skewed at the outset of each measurement. Hence one
obtains unequal residence times in the two states. The
residence times can be computed analytically in some
limiting cases (see below and [9]). In the presence of
weak noise, having rms amplitude small compared with
the bias signal, amplitude one obtains a spread in the res-
idence times which must now be described statistically.
For the case in which the bias signal is suprathreshold,
the residence times distributions for the right and left
potential wells will be almost symmetric with a mean
value, roughly corresponding to the deterministic resi-
dence time, approaching the distribution mode. Absent
the target dc signal, the distributions coincide. The pres-
ence of the external target signal, assumed very small
compared to the potential barrier height, renders the po-
tential asymmetric with a concomitant di�erence in the
mean residence times which, to �rst order, should be ex-
pected to be proportional to the asymmetry-producing
target signal itself. Hence, the di�erence between the
mean residence times in the two states of the system pro-
vides an observable that can be used as a quanti�er for
detecting the presence of the target signal.
This procedure has some advantages compared to the

conventional readout scheme: it can be implemented ex-
perimentally without complicated feedback electronics,
with or without the presence of bias signals (depend-
ing on the experimental scenario, as mentioned above).
In fact, the di�erence in residence times is quanti�able
even in the absence of the periodic bias signal, with only
noise driving the sensor between its steady states al-
though, as outlined earlier, practical considerations e.g.
observation times that depend on the relative magni-
tude of the noise standard deviation and the barrier
height may limit the applicability of this procedure in
some cases. The residence-times based technique works
without the knowledge of the computationally demand-
ing power spectral density of the system output (in most
cases a simple averaging procedure on the system output
works just �ne) and, �nally, it performs well in the pres-
ence of noise. We hasten to note that threshold statis-
tics underpin the class of \level- crossing detectors" that
have been available for a variety of applications for almost
�fty years. The method outlined above has, in di�erent
forms, been used in nonlinear sensors (especially sensors
that have a hysteretic output-input transfer characteris-
tic such as those that utilize the dynamics in a ferromag-
netic core in the signal detection stage), albeit without a
clear understanding of the rami�cations of sensor noise
on the physics of the measurement [2].
The afore-described ideas are quanti�ed in the frame-

work of a mean �eld model for the evolution of the av-
erage magnetization in a ferromagnetic core. Detection
of a dc target signal is achieved by pre- biasing the core
with a suprathreshold time-periodic signal which we take
to be sinusoidal, although other periodic waveforms may
be better suited for speci�c applications; we introduce
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one such waveform and compare the system response to
this signal, to the response to a sinusoidal signal having
the same frequency and a suitably de�ned equivalent am-
plitude. The object of the paper is to compute < �T >,
the ensemble-averaged (in the presence of noise) di�er-
ence in mean residence times for the right and left wells of
the potential function, when a small dc signal causes an
asymmetry. To lowest order, < �T > should be propor-
tional to the target signal. Our calculations are carried
out in the context of experiments on a so-called Advanced
Dynamic Fluxgate Magnetometer (ADFM) prototype, a
room-temperature magnetic �eld detector that is envi-
sioned to use the residence times readout scheme; some
preliminary experimental results, obtained with a very
simple laboratory prototype, are presented in the latter
sections of the paper. The dynamics of the ferromagnetic
core subject to a symmetry-breaking dc target signal, to-
gether with a known bias signal in background noise are
examined, the object being a computation of the di�er-
ence < �T > in the residence times; however, we also re-
cast the dynamics in terms of the more familiar standard-
quartic (or DuÆng) bistable potential description. This
system, usually analytically more tractable than the com-
plex dynamics that it mimics in this case, has been ex-
tensively utilized as a \test-bed" for a plethora of non-
linear stochastic dynamic phenomena, and it can be ex-
pected to yield results that are in good qualitative agree-
ment with those from systems described by more com-
plex (but still bistable) potential functions. Using this
\equivalent" standard quartic representation, the issue of
optimal achievable accuracy and bounds thereon is also
addressed, using stochastic perturbation theory; a family
of estimation procedures that are asymptotically optimal
for vanishingly small noise is developed using this theo-
retical machinery. Numerical simulations have shown [18]
that the estimators that are so-developed and optimized
for very small noise, are also applicable to larger noise
intensities.
We �nd that while the standard quartic yields, for the

most part, the same qualitative behavior as the \soft"
(so-called because it has a shallower slope at x!1 than
the much steeper DuÆng or \hard" potential) potential
function that describes the \single domain" ferromag-
netic sample in the mean �eld limit, there are some dif-
ferences in the behavior predicted by the two potentials,
and we highlight and explain these di�erences where they
occur. We also invoke, where necessary, the simplest of
all static threshold systems with hysteresis, the Schmidt
Trigger (ST) [17] as a tool to obtain analytic results which
are expected to show the same qualitative behavior as
more complicated dynamical two-state systems. Finally,
we note that the ideas in this paper may be extended
to tri- or multi-stable dynamic systems, e.g. the class of
(�2)3 models discussed by Rao and Pandit [19].

II. MODELS AND DETERMINISTIC DYNAMICS

The best-known system that exhibits hysteresis [21], is
the ferromagnet, usually described by Ising-type models
[21,22], and exhibiting a phase transition to the param-
agnetic state when the temperature T exceeds the Curie
temperature Tc. One may describe the ferromagnet by
a Landau free energy function that is even in the order
parameter (the magnetization m); this potential energy
function is, then, bistable in the ferromagnetic phase,
becoming monostable in the paramagnetic phase. The
transition to monostability can be achieved by sweeping
the temperature through the Curie point or applying an
external magnetic �eld which breaks the symmetry of the
potential, causing one of the metastable states to disap-
pear when the �eld amplitude exceeds a critical value.
Of course, this begs the question of having a continuum
model in which one may incorporate the dynamical be-
havior of the ferromagnet, including the e�ects of time-
dependent external magnetic �elds. This is accomplished
through mean �eld theory [22] which allows one to use a
master equation for the averaged magnetization x(t) and
arrive at the dynamic equation:

�
dx

dt
= �x+ tanh

�
x+ h(t)

T

�
� �@U

@x
(x; t); (1)

where � is a system time constant, and T , a dimensionless
temperature [20]. h(t) is an external magnetic �eld that
may be time-dependent, having the dimension of m. We
have also expressed eq. (1) in terms of the gradient of a
potential energy function (the analog of the free energy
function referred to above):

U(x; t) =
x
2

2
� 1

c
ln cosh[cfx+ h(t)g]; (2)

where we set c = T
�1. The potential energy function (2)

is bistable for c > 1. Dynamical hysteresis in the system
(1) and other systems (see below) with qualitatively sim-
ilar potential energy functions, with h(t) often taken to
be time-sinusoidal, has been the subject of much recent
study [23,24]; cooperative phenomena, e.g. SR, arising
in the presence of background 
uctuations [24,25] have
also been examined in the literature. The role of back-
ground 
uctuations has been ignored in the derivation of
(1); however, in our ensuing work, a 
uctuation term will
be added, phenomenologically to the rhs, in an attempt
to capture the in
uence of the noise-
oor.
The theoretical part of this paper is an attempt to

make contact with laboratory experiments carried out
with a crude rendition of a 
uxgate magnetometer, con-
sisting of a ferromagnetic ring core wound with a pri-
mary (input) coil and a secondary (output) coil. Details
of the setup are given in section 7. We are interested in
a \macroscopic" magnetic description of the 
uxgate dy-
namics, rather than a detailed micromagnetic description

3



based on individual domain dynamics; a detailed deriva-
tion of mean �eld dynamics of the form (1) is not our in-
tent. Rather, we use an equation of the form (1) to model
the dynamics of the entire core, assuming the applicabil-
ity of the mean �eld description. Such modeling has been
used in the literature [1,2] and we will �nd that the model
yields reasonably good (given that it is, at best, an ap-
proximation to a detailed micromagnetic description of
the domain dynamics) agreement with the experimental
results, thereby validating our description. Other collec-
tive approaches to the stochastic dynamics of aggregates
of monodomain ferromagnetic particles do exist in the
literature [26] usually starting from the Landau-Gilbert
equations [27] for a single-domain particle with thermal
noise included; stochastic resonance in such a system has
also been studied [28].
As mentioned earlier, the model (1) will be augmented

by an additive noise term; in this section, however, we
will focus attention on the deterministic dynamics. In
practice the time constant � is very important, particu-
larly in the presence of noise. If � is the smallest time-
scale in the system, i.e., both the noise bandwidth (de-
�ned for gaussian noise as the inverse of the correlation
time �c) and the bias signal period are well within the sys-
tem bandwidth �

�1, then the device essentially behaves
like a static nonlinearity, with the lhs of (1) equated to
zero. Hence, the dynamics are reduced to following the
dynamics of the noise plus the signal, as they traverse
two thresholds, given essentially by the �xed points of
the potential (2). This procedure has already been de-
scribed for bistable systems subject to subthreshold time-
sinusoidal bias signals. It is convenient to start our de-
scription of the deterministic dynamics with this assump-
tion and a suprathreshold bias signal having the form
h(t) = A sin!t (period T0 = 2�=!), since an analytic
solution of the equation (1) is not possible for large bias
signal amplitudes. We note that in practical devices, the
bias signal is known, and controllable; hence we will as-
sume, always, that the signal parameters can be varied
at will. We also remind the reader that the bias signal
plays a critical role in conventional readout schemes, via
the appearance of even harmonics of the frequency ! in
the output power spectral density (PSD) of m when the
symmetry-breaking target dc signal is applied [8].
In this work, we will assume the deterministic bias sig-

nal h(t) to be suprathreshold i.e., switching between the
two stable attractors in the potential system, or between
the static thresholds when the device dynamics are irrel-
evant, is controlled by the bias signal, with one threshold
crossing occurring during each half-cycle; the exact time
to threshold crossing depends, of course, on the system
and bias parameters. The variable of interest for the
deterministic situations of this section is, then, the dif-
ference �T = jT+ � T�j, the di�erence between the res-
idence times in the states of the two-state system. This
quantity is clearly a function of the system and bias pa-
rameters. It is zero when the two stable states are sym-
metric about the unstable �xed point, and acquires a �-

nite value when a dc target signal breaks this symmetry.
Figure (1) demonstrates the \rocking" of the potential
energy function (2) with a bias signal h(t) = A sin!t+",
(! = 2�=T0) when the dc o�set " is zero and also when it
is �nite. Of course, one could also examine the response
to subthreshold bias signals, the \Stochastic Resonance"
(SR) scenario. We will not do so in this paper, however,
since a large body of literature already exists on this sub-
ject [6,8].

-2.5

 0

 2.5

-3  0  3

U
(x

)

x

-2.5

 0

 2.5

-3  0  3

U
(x

)

x

-2.5

 0

 2.5

-3  0  3

U
(x

)

x

-2.5

 0

 2.5

-3  0  3

U
(x

)

x

FIG. 1. Mean �eld potential (2) (c = 6) with sinusoidal
driving signal having amplitude A = 1 and period T0. Solid
lines depict potential at times t = 0 (upper left), T0=4 (upper
right), T0=2 (lower left), 3T0=4 (lower right). Dashed line
depicts potential having additional dc o�set " = 0:3

Consider �rst the simplest possible manifestation of a
two-state system, the Schmidt Trigger (ST) [17], charac-
terized by a two-state output and a hysteretic transfer
characteristic. Its output rests in one state as long as the
input voltage is less than a threshold. The switch to the
other state is almost instantaneous (the ST can be mod-
eled as the limiting case of a dynamical system [29] with
very small time constant �), occurring when the input
voltage exceeds the threshold. Let �b be the ST thresh-
olds, with h(t) the suprathreshold time-sinusoidal signal
introduced above, and "(� b) a dc target signal whose
e�ect is to \displace" the sinusoidal signal upwards by
an amount ". Then, crossings of the upper and lower
thresholds occur at h(t10) + " = b and h(t20) + " = �b,
at times t1;20 respectively. Thus,
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t10 = !
�1 sin�1

�
b� "

A

�
; t20 = !

�1

�
sin�1

�
b+ "

A

�
+ �

�
:

(3)

The next up-crossing occurs at t30 = t10 + 2�=!, since
h(t) is suprathreshold and one can expect an up (or
down)-crossing within every half-cycle of the signal.
Then T+ = t20 � t10 and T� = t30 � t20, whence we
obtain,

�TST0 = 2!�1
�
sin�1

�
b+ "

A

�
� sin�1

�
b� "

A

��
: (4)

De�ning a "sensitivity" via S(") = d�T

d"
we obtain

S(") =
2

!A

2
4
 
1�

�
b+ "

A

�2!�1=2
+

 
1�

�
b� "

A

�2!�1=235 ;
(5)

which clearly increases with ", saturating at �" = A � b.
It is instructive to note that �TST0 vanishes when " = 0,
and �TST0 ! 4"

A!
for large (compared to the threshold

location) A. In the large A regime, we can also show that
the residence time T+ ! 1

!
(� + 2"

A
), which approaches

T0=2 at very largeA as expected. A completely analogous
set of limiting values exist for the other residence time
T�.
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FIG. 2. Sinusoidal signal A sin(2�t=T0) with A = 1, period
T0 = 100, and two realizations of the waveform (6) obtained
via (6). �1+�2 = A, and �2 = 0:05 (top waveform), �2 = 0:25
(bottom waveform).

One may show that other (non-sinusoidal) bias wave-
forms can lead to enhanced sensitivity under the appro-
priate operational conditions. One such waveform is ob-
tained by adding a square wave having amplitude �1 with
a triangular wave of amplitude �2, both having frequency
!. The amplitudes of the component signals are set ac-
cording to the prescription �1 + �2 = A. The result is a
periodic waveform (period T = 2�=!) given by:

H(t) = �1 +
2!

�
(t� 1

2

�

!
)�2; 0 < t <

�

!

= ��1 �
2!

�
(t� 3

2

�

!
)�2;

�

!
< t <

2�

!
: (6)

Figure (2) shows a sinusoidal signal having period T0 =
100 and the waveform (6) having the same period. For
the waveform (6), it is clear that the parameters �1;2 de-
termine whether threshold crossings occur on the signal
segments having slope � = 1, � < 0, or � > 0. In fact,
it is evident that for crossings of the upper threshold,

at time t
(i)
10 , one has t

(i)
10 = 0 if �1 � �2 � b � " with

crossings occurring on the � = 1 segment, and t
(i)
10 > 0

for �1 � �2 < b � ", for crossings occur on the � > 0
segment. For the lower threshold, the crossing times are

t
(i)
20 = �=! for �1 � �2 � b+ " corresponding to crossings

on the � =1 segment, and t
(i)
20 > �=! for �1��2 < b+",

corresponding to crossings on the � < 0 segment.
For the cases when the threshold crossings occur on

the � 6= 1 segments one can, analogous to the time-
sinusoidal case, obtain the upper and lower threshold
crossing times as

t
(i)
10 =

b� "� �1 + �2

�2

�

2!
;

t
(i)
20 =

b+ "� �1 + 3�2
�2

�

2!
; (7)

whence we obtain,

�T (i) = T0
"

�2
; �1 � �2 < b� ";

�T (i) = T0
b+ "� �1 + �2

2�2
; b� " � �1 � �2 � b+ ";

�T (i) = 0; �1 � �2 > b+ "; (8)

and the sensitivity S
(i) = @�T

(i)

@"
is obtained as S(i) =

T0=�2, S
(i) = T0=2�2, and S

(i) = 0 for each of the three
regimes de�ned in (8). Throughout this paper we use
the superscript (i) to denote quantities (e.g. crossing
and residence times) associated with the bias waveform
(6).
Plotting the quantity �TST0 vs. " for the two bias

signal waveforms considered, shows immediately that the
bias signal waveform (6) can yield a better separation �T
for low values of the target signal. This will be illustrated
via simulations in section 4.
Finally, we introduce an alternative realization of the

dynamics (1) in terms of the simpler (from an analytic
standpoint) DuÆng or \hard" potential:
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dx

dt
= �@Ud(x; t)

@x
; (9)

with the potential function de�ned as

Ud(x; t) = �
a

2
x
2 +

b

4
x
4 � ("+ h(t))x; (10)

a; b being constants to be determined. In the absence of
any external signals ("; h(t) = 0) this potential has an
unstable maximum at 0, and stable minima at xdp0 =p

a

b
= �xdm0, with the height of the potential bar-

rier given by �Ud0 = a
2

4b
. For the \soft" potential (2)

the corresponding quantities may readily be obtained
via expansion about the limiting values for large c. We
then obtain an unstable maximum at 0, with minima at
xp0 = 1+�p = �xm0, �p = (tanh c� 1)=(1� c sech2c).

The barrier height is �Up0 =
���x2p02 � 1

c
ln cosh cxp0

���. We

then set the parameters a; b in (10) by demanding that
the extrema, and hence the energy barrier heights, of the
potentials (2) and (10) coincide when " = h(t) = 0. This
readily leads to the \equivalent" hard potential (10) with
the de�nitions

a =
4�Up0

x2
p0

; b =
a

x2
p0

: (11)

The two potentials now have the same extrema and bar-
rier height in the signal-free case; of course their slopes
(for x ! �1), are quite di�erent. This di�erence leads
to changes that are quantitative only, when we exam-
ine the response of both models to the target signal in
the presence of a noise
oor and the periodic bias signal.
Hence, with the de�nitions (11), the hard potential af-
fords a model that captures most of the essential physics
of this class of devices; this is particularly convenient
from the standpoint of analytic calculations, plus it al-
lows us to draw on the huge body of literature on various
aspects of the noisy nonlinear dynamics of these devices.
We note that the energy barrier separating the stable
steady states, decreases with decreasing c. For c < 1,
the parabolic term in the potential (2) starts to domi-
nate, and the dynamics approaches linearity. The case of
very small energy barrier is relevant when one considers,
for example, \soft" ferromagnetic cores in which one ob-
serves frequency-dependent hysteresis loop areas, as well
as cores that are approximately \single domain" [30]; in
these cores, the hysteresis loop is very narrow, the energy
barrier is very small, and they can be well-approximated
by the potential (2) with c � 1.
Consider now, the inclusion of a small (with respect to

the barrier height) asymmetrizing dc signal ", together
with a known bias signal h(t) = A sin!t that we take
to be suprathreshold. The hard potential (10) develops
points of in
exion at xfdp =

p
a

3b
= �xfdm, and the

threshold crossings occur when "+h(t) = �axfdp+bx
3
fdp

with a similar condition involving the other in
exion

point xfdm. The rhs of this expression is �xc � �
q

4a3

27b

with the opposite (i.e. plus) sign corresponding to a
crossing of the in
exion point xfdm. It is important
to note that we are assuming the bias amplitude to be
large enough that the signal dominates the dynamics so
that the DuÆng dynamics (9) can be approximated by
the simple threshold dynamics of the form considered in
the ST description, above; the crossing \thresholds" are,
thus, given by the points of in
exion. In a procedure
completely analogous to that utilized in the ST, we ob-
tain the di�erence in residence times for the equivalent
system (9) in the absence of noise:

�Td0 =
2

!

����sin�1
�
xc + "

A

�
� sin�1

�
xc � "

A

����� : (12)

An analogous expression for the residence times di�er-
ence may be obtained for the mean-�eld dynamics (1)
under the same conditions, i.e assuming the system and
signal parameters to be such that the system may be well-
approximated by a static threshold device. The points of

in
exion are at xfsp =
q

c�1
c

= �xfsm and we obtain

for the di�erence in residence times,

�Ts =
2

!

��sin�1 gp � sin�1 gm
�� ; (13)

where gm;p � fc�1 tanh�1 xfsm;p�xfsm;p� "g=A. Anal-
ogous expressions for the waveform (6) may be derived
analytically; we defer these calculations for a later sec-
tion.
In the following sections we compute and analyse the

mean residence times di�erence in the presence of sys-
tem noise. As mentioned earlier, we expect the expres-
sions (4), (12), and (13) to provide good approximations
to the mean residence times di�erence when the known
bias signal is well suprathreshold and the noise and target
signal are small. Throughout this work, we will consider
the c > 1 case, corresponding to bistability in the poten-
tial function (2). It is worth noting, however, that tem-
perature 
uctuations (that can reasonably be expected
to occur in applications) lead directly to 
uctuations in
the barrier height and the locations of the minima, since
these quantities depend on the paramater c. Hence, we
may encounter situations wherein the potential switches
between mono- and bistability on the time-scale of the

uctuations. This scenario is not treated here, rather it
will be addressed in a forthcoming publication.
It is very important to reiterate that the results of

this paper hold true for a very large class of dynami-
cal systems, those whose dynamics are underpinned by a
bistable (or even multistable) potential energy function.
The expressions for the deterministic residence times dif-
ference, �T , can be analytically derived only when we
ignore the (internal) system dynamics invoking the large
A limit, wherein we can simply approximate the bistable
dynamics by a (non-dynamic) Schmidt trigger with ap-
propriately computed threshold settings. We now make
the (deterministic) treatment of this section more realis-
tic, by introducing a noise-
oor.
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III. LEVEL CROSSING DYNAMICS IN THE

PRESENCE OF A NOISE-FLOOR

We have noted that in the absence of the target signal
(" = 0) and for the noiseless case, the bias signal pe-
riodically \rocks" the potential (�gure 1). If the signal
amplitude A exceeds the deterministic switching thresh-
old, the state-point will make, successively, transitions to
the two stable states at deterministic (well-de�ned) times
separated by a half-cycle of the bias signal; these switch
events are quite regular.
Now consider the noisy case; throughout this work we

will assume that the noise is gaussian and correlated,
i.e., it is derived from a white- noise driven Ornstein-
Uhlenbeck process [31]:

_�(t) = ���1
c

� + �F (t) (14)

where F (t) is a white noise process having zero mean
and unit variance: < F (t) >= 0, and < F (t)F (t0) >=
Æ(t � t

0). We readily obtain for the correlation function
of the colored gaussian noise, < �(t)�(t0) >=< �

2
>

exp[�jt� t
0j=�c] where < �

2
>= �

2
�c=2. We also assume

that the signal frequency ! is well within the noise band,
i.e. the noise is wideband vis-a-vis the signal. This is a
reasonable assumption, and it will become evident that
it may be possible to somewhat mitigate problems aris-
ing from the noise statistics by adaptively adjusting the
bias signal amplitude (vis-a-vis the noise 
oor and barrier
height) in real scenarios.
For " = 0 and A suprathreshold (this is well repre-

sented by the condition Ax0

�U
> 3=2 where x0 denotes

the location of a stable �xed point of the potential), the
threshold crossings to the stable states are controlled by
the signal, but the noise does introduce some randomness
into the inter-spike intervals. The result is a distribution
of residence times (the RTD) whose variance increases
with increasing noise intensity. For A far above the
deterministic switching threshold and moderate noise,
the RTD assumes a symmetric narrow (almost gaussian)
shape with a mean value (the mean crossing time) nearly
the same as the most probable value or mode. The mean
values (or modes, in this case) of the histograms corre-
sponding to transitions to the left and right stable states
coincide. As the signal amplitude decreases, the RTD
starts to develop a tail so that the mean and mode get
separated; the appearance of the tail is an indication of
the growing role of noise in producing switching events,
although the suprathreshold signal is still the dominant
mechanism. When the signal amplitude falls below the
deterministic crossing threshold, the crossings are driven
largely by the noise. The RTD can assume a characteris-
tic multi-peaked structure [13,32] that shows \skipping"
behavior since the noise can actually cause the cross-
ings to occur at di�erent multiples nT0=2 (n odd) of
the half-period, and the Stochastic Resonance scenario
comes into play [6] through a synchronization of char-
acteristic time-scales in the system; the noise determines

the tail of the RTD, and introduces a (symmetric) broad-
ening, or dispersion, in individual lobes of the RTD, since
the individual crossing events do not always occur pre-
cisely at times nT0=2. We will not consider this (so-
called subthreshold) case in the current paper, limiting
ourselves to the suprathreshold bias signal case only.
We re-iterate that with zero target signal, the cross-

ing statistics to the left or right minimum of the po-
tential, are identical, with coincident RTDs, as should
be expected. However, let us now consider the case of a
nonzero but small target signal, "x0 � �Up0, that is suf-
�cient to skew the potential (�gure 1) but not remove one
of the minima, in the presence of gaussian noise and the
bias signal A sin!t. Before presenting simulation results,
we comment on some features that we should expect to
observe in the RTDs:
1. The potentials (2) and (10) are now a priori skewed

even for A = 0. Hence, the mean residence times in the
two stable states will be di�erent. Denote these times
by the ensemble-averaged quantities < T+ >;< T� >

respectively.
2. For very large bias signal amplitudes and mod-

erate noise intensity (�2 � �Up0;�Ud0), the RTDs
are two well-separated symmetric near-gaussian distri-
butions centered about modes that coincide with their
means < T� >; for signal amplitudes much larger than
the rms noise amplitude, the distributions tend to coin-
cide. As the noise intensity increases the distributions
become broader and, as the bias signal amplitude drops
to the deterministic switching threshold and below, start
to develop tails with separated modes and means.
3. The separation < �T >= j < T+ > � <

T� > j of the mean values yields a direct measure of
the asymmetry-producing target signal. It can be cal-
culated for the zero noise case (section 2), as well as
with weak noise and bias signal amplitude A that is well-
suprathreshold. We will �nd in fact (section 5) that, in
the large A=� limit, < �T > is well-approximated by its
deterministic analog, and is proportional to the asym-
metrizing signal ". Theoretical calculations of this quan-
tity are currently underway, but numerical simulations
are shown below. For an a priori balanced device (i.e.
symmetric potential function), in fact, the existence of a
non-zero < �T > can be taken as a sign of the presence
of the target signal.
4. In the presence of increasing amounts of noise the

RTDs tend to merge and their mean values (which are
now well-separated from the modes) also may be diÆ-
cult to distinguish, since < �T >! 0 with increasing
noise. However, increasing the bias signal amplitude (this
could be done adaptively in a real application) once again
leads to the signal as the dominant mechanism for cross-
ing events and the distributions \sharpen" somewhat and
have less overlap, becoming more resolvable, even though
the separation < �T > may actually decrease.
5. For subthreshold bias signals, the crossing events are

noise-dominated and the RTDs multimodal in general.
The Stochastic Resonance [6] scenario may be exploited
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to yield better signal processing. This scenario has been
extensively discussed in the literature; we do not dwell
on it here.
6. For very special situations, primarily those in which

there is a small amount of noise, one can carry out the
above procedure with a very weak bias signal. In this
case the RTDs for each potential well are almost uni-
modal with long tails. The mean values and modes are,
again, dependent on the target signal; however, in this
case, the slopes of the long-time tails of the density func-
tions are di�erent for the two wells, and this di�erence
can also be used as an identi�er, if needed, of the tar-
get signal. The limiting case of zero bias signal has also
been studied [9]; our studies indicate that this operating
mode may be optimal even for small target signals ", with
< �T > proportional to ". This operating mode relies on
the presence of background noise that is strong enough to
initiate inter-well switching events without the presence
of a suprathreshold bias signal. Of course, in practical ap-
plications, the presence of assorted (often non-Gaussian
and non-stationary) noise sources, as well as readout is-
sues, could make the zero bias signal mode a possibility
for only very specialized scenarios. For these, more com-
plicated, noise backgrounds, the renewal assumption for
the crossing events cannot be expected to hold. This
operation mode may be particularly well-suited for ap-
plications wherein the potential barrier height can be ad-
justed during an experiment. It does a�ord the attractive
possibility of signi�cantly reduced onboard power.
7. Our calculations to date indicate that a sinusoidal

bias signal is not always optimal; in some operational
scenarios, better sensitivity may be obtained, by using
other signal waveforms, e.g. the waveform (6) or a trian-
gular waveform, which have a stepwise linear behavior.
An exhaustive study along these lines is beyond the scope
of this paper, however, we do present results (next sec-
tion) based on a bias signal of the form (6). In general,
however, the choice of optimal bias waveform is very de-
pendent on the system and signal parameters in a given
operating scenario.
Note that in an experiment, under any of the above

scenarios, it is not necessary to actually compute the
RTDs. One simply accumulates crossing times for the
two saturation states of the hysteresis loop, and com-
putes the arithmetic mean for each set of residence times.
Then, an important issue is the amount of data (depen-
dent on the response time of the electronics), the amount
of time one can \look" at the target signal, as well as the
bias frequency ! required to obtain reliable estimates of
< �T >. It is clear that increasing the bias signal am-
plitude, in order to better-discriminate the RTDs, can
lead to enhanced detection probabilities. In this context,
it is important to point out that the above technique
may be implemented with bias signal amplitudes that
are not substantively larger than the potential barrier
height, and also with relatively low bias frequencies; this
is true particularly for the new \single-domain" [30] class
of magnetic 
uxgate sensors which have mainly gaussian

correlated noise and small 1/f risers. In practice, how-
ever, one should expect to confront a tradeo� between the
bias signal amplitude (this is a function of the on-board
power in a practical sensor) and the concomitant degree
of resolution of the peaks of the histograms, and what is
necessary for a reliable estimate, usually with a limited
observation time, of the target signal from < �T >.

IV. SIMULATIONS

We now show the results of numerical simulations car-
ried out on the original mean-�eld model (1) as well
as the equivalent quartic model (9), using a sinusoidal
bias signal as well as the waveform (6), with a gaussian
noise background present in all cases. The noise is as-
sumed to enter additively on the rhs of both models.
We use c = 4 for all simulations; this completely de�nes
both (bistable) potentials via (2) and (10). The value
of c remains constant throughout this work, it being as-
sumed that this parameter cannot easily be adjusted in
experiments. Note that real devices usually have a time-
constant � , that sets the device bandwidth. The time
constant � of real devices, is usually about 10�8 so that,
in the simulations, the signal frequency and noise band
are all adjusted to lie well within the instrument band-
width ��1. For theoretical calculations, this implies that
one may represent the device as a \static" nonlinearity,
analogous to our approach in section 2, and simply track
the noise and signal dynamics as they pass through the
system. Under these conditions, the results for di�erent
signal frequencies (as long as !

2�
� �

�1) are very sim-

ilar; for frequencies larger than �
�1, however, dynamic

hysteresis e�ects can become more important. In our
simulations, we consider a dynamical device wherein the
time-derivative term cannot simply be discarded; we take
� = 1. Finally, we set the correlation time of the noise as
�c = 0:1 and the bias signal period T0 = 100, so that the
bias signal is within the noise-band. In this work, we do
not investigate the e�ects of noise color, the subject of a
huge amount of attention in the literature (see e.g. [33]);
this analysis is deferred to a later publication.
The results of simulations, wherein we examine the

e�ects of changing the noise variance �
2, the bias am-

plitude A, and the (dc) target signal ", are shown in
�gures (3) and (4). In both cases, the top row shows the
probability density of residence times computed using a
sinusoidal bias signal (left panel) and the waveform (6)
(right panel), as a function of the normalized time t=T0.
Results are shown only for the mean �eld model (1), in
the interests of clarity; in all cases, however, we obtain
excellent agreement when the simulations are carried out
using the equivalent quartic model (10), with parame-
ters computed via (11). The bottom row of each �gure
shows the residence times di�erence < �T > as a func-
tion of the noise variance �2. The bias amplitude A is
suprathreshold in all cases; we remind the reader that
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the case of zero bias signal has already been discussed
in [9], and the case of subthreshold bias signal (the SR
scenario) has also been extensively discussed in the lit-
erature; we do not address these situations here. The
following features are observed:
1. Increasing the noise variance, leads to an increase in

the standard deviation of the density function; the two
components of the RTDs broaden and, simultaneously,
lose height at their modes so that the normalization is
preserved. As the bias amplitude A approaches the de-
terministic switching threshold, one expects the noise to
play an increasingly important role in switching events;
this would lead to a tail in the density function, and
a separation of the mean value, from the mode. In all
cases, the distributions remain symmetric about T0=2, as
expected.
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FIG. 3. Residence times density vs. normalized time for
noise variance parameters �2 = 0:05; 0:1; 1:0 (top to bottom)
for mean �eld model (c = 4) with bias signal of amplitude
A = 1:0 and period T0 = 100, and asymmetrizing dc signal
" = 0:1. Left panel: sinusoidal driving signal. Right panel:
waveform (6) with �1 + �2 = A, �1 = 2�2 (note the di�erent
scale). Lower panels: mean residence times di�erence vs. �2

for changing target dc signal. " = 0:3 (top), 0:2 (middle), and
0:1 (bottom).

2. The waveform (6) leads to a larger separation of the
mean values, particularly at low to intermediate noise in-
tensities (see lower panels). Hence, it may be more con-
venient to use this bias waveform for speci�c operational
situations, wherein resolution is a problem and signal ob-
servation times are constrained.
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FIG. 4. Same as �gure 3 with noise variance parameter
�
2 = 0:1; " = 0:1, and bias amplitude A = 1:6 (tallest pair),

1:2 (middle pair), and 0:8 (lowest pair). Curves in lower pan-
els correspond to A = 0:8 (top), 1:2 (middle), and 1:6 (bot-
tom).

3. While the sinusoidal bias signal clearly has a �xed
waveform (speci�ed by its amplitude and frequency), the
waveform (6) can be adjusted by choosing the relative
values of �1 and �2, subject to the constraint �1+�2 = A.
Hence, it is worth the digression, at this point, to investi-
gate the value of < �T > as a function of the parameters
�1 and �2 in (6). In order to compare this value with the
value obtained for the sinusoidal bias signal we keep the
condition �1 + �2 = A. In �g. (5) we show < �T > as
a function of �2 for di�erent values of the noise intensity
together with the value obtained for the sinusoid. The
dynamical system described by the \soft" potential (2) is
simulated, so that only one (internal) adjustable parame-
ter c, changes the shape of the potential. The data points
represent the theoretical prediction obtained by approx-
imating the double well potential with the "equivalent"
(see section 2) Schmidt trigger system:

< �T >= 0; �2 <
1

2
(A� b� �)

< �T >=
2�

!

b+ ��A+ 2�2
2�2

;

1

2
(A� b� �) � �2 �

1

2
(A� b+ �)

< �T >=
2�

!

�

�2
; �2 >

1

2
(A� b+ �); (15)

where we have re-arranged the result in (8), and set the
threshold b as in (13). The non-monotonic behaviour of
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< �T > as a function of �2 can be readily understood
by using the same argument presented for the derivation
of (8). It is interesting to note that there exists an opti-
mum value for �2 and that by a proper selection of the
combination �1; �2 the waveform in (6) can outperform
(in terms of < �T >) the more conventional sinusoidal
bias; in fact, one observes that �2 = A (a purely triangu-
lar bias signal) most closely approximates the sinusoidal
waveform. The values of < �T > for the sinusoidal bias
signal with the noise intensities used in the �gure, are
very close (indistinguishable on the scale of the �gure)
to the horizontal line (corresponding to the deterministic
case); this is to be expected since the curves generated
using the waveform (6) also converge to the same value
at large �2. With decreasing noise intensity, the curves
approach the deterministic case (the large A=� limit),
and the optimal �2 is then given by �2c � (A� b� ")=2.
The e�ect of changing c, while keeping all the driving
parameters �xed, is to change the barrier height and the
separation of the potential minima. For decreasing c, the
barrier height decreases, the curves in �gure (5) tend to
converge towards the deterministic results, i.e. the zero
noise case, more rapidly; in addition, the optimal value
of �2 moves towards lower values and the maximal sepa-
ration < �T >, at the optimal �2, is lower.
4. At very large noise, < �T > approaches zero.

This is expected, with the distributions overlapping more
and more with increasing noise. The approach to zero
is slower for larger target signals because of the larger
asymmetry in the potential that they bring. Also, the
details about the potential and the bias signal waveform,
become increasingly irrelevant as �2 increases.
5. At vanishingly small noises, < �T > is almost 
at,

for small target signals, and shows a monotonic decrease
with increasing noise. At zero noise (not shown on the
plots) the curves would intersect the vertical axis at the
deterministic di�erence �T .
6. Increasing the bias signal amplitude reduces <

�T > even as it renders the distributions somewhat more
resolvable for large noise (see �gure (4)). This indicates
that in a practical application, it may not necessarily be
of bene�t to apply an extremely large bias signal (see the
next section); our simulations show that bias signals hav-
ing amplitude not much larger than the barrier height will
suÆce. Of course, exceptional cases e.g., large noise, or
non-gaussian and/or non-stationary noise, may necessi-
tate the application of larger drive signals. An important
point to be made here is that the (possibly detrimental)
e�ects of a large noise background may be reduced { but
not entirely eliminated { by carefully increasing the bias
signal; this procedure can also render the device response
somewhat immune to the noise statistics. Such an \adap-
tive" control could be achieved by, e.g., a neural network
in practical situations. Using the waveform (6) leads (see
�gure (4)) to a somewhat cleaner resolution of the modes
of the RTDs with increasing bias amplitude, and, as al-
ready noted, the di�erence in mean residence times is
actually greater than in the sinusoidal driving case, with

the appropriate selection of �2. The fact that the wave-
form (6) is locally linear where the threshold crossings
occur, contributes to the far better resolution of the res-
idence times di�erence < �T > that it brings. In all
cases, a very large bias signal has the e�ect of e�ectively
linearizing the response, with the residence times densi-
ties merging into a single peak centered at T0=2.

FIG. 5. E�ect of varying parameters in the suprathreshold
bias waveform (6). Normalized mean residence time di�er-
ence vs. �2 for dynamical system described by (1) and (2).
c = 4; A = 1; �1 + �2 = A; T0 = 100; " = 0:1. Solid curves
correspond (left-to-right)to noise intensity �

2 = 0; 1:0; 10:0
Dotted curve denotes result obtained via \equivalent" deter-
ministic (�2 = 0) threshold model (15). Horizontal line de-
notes �T for sinusoidal bias waveform with same amplitude
and frequency, and zero noise; lines corresponding to di�erent
noise intensities (for sinusoidal driving case) are indistinguish-
able from deterministic case on scale of the �gure.

7. In the limit of low noise and suprathreshold bias am-
plitude one expects the simple \non-dynamical" picture
presented in section 2, to yield a very good description of
the dynamics, with the mean residence times well approx-
imated by the deterministic expressions (12) and (13). A
simple calculation in the next section, will demonstrate
this point nicely. From a practical standpoint, the fact
that one can, in the low-noise case, compute a priori

the expected observable < �T > via the determinsitic
quantity for given target and bias signals, can be of con-
siderable utility in practical applications.
8. The di�erence in means < �T > is proportional

to the target signal, provided the latter is weak [9]. The
smallest target signal strength (" = 0:1), used in the
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�gures is relatively strong so that this relationship may
be only approximately true, with higher order terms (in
") giving a non-vanishing contribution to < �T >.
9. As already noted, but not shown in the �gures,

the two descriptions (mean �eld and equivalent quartic)
give very similar results, with some quantitative di�er-
ences attributable to the approximation (11), wherein the
mean �eld potential is replaced by a \harder" potential
(the quartic model). The relevant observable < �T > is
virtually identical for both models except for some minor
di�erences, partly attributable to simulation diÆculties,
at very low noise intensities.
Finally, we comment here on an interesting e�ect, Res-

onant Trapping (RT) [34], which is observed when the
bias signal amplitude is just barely above the determin-
istic switching threshold. In this regime, the noise can ac-
tually cause the system to miss a threshold crossing; the
state point remains trapped in one of the stable attrac-
tors (or near the unstable point of the potential) by the
noise. This e�ect leads [9] to a maximum in < �T > at
a critical noise intensity; the e�ect (which should not be
confused with the substance of �gure (5)) disappears as
the bias signal amplitude is increased, to the point where
the crossings are, predominantly, driven by the signal.
Clearly, RT is a mechanism that a�ords the possibility of
using even weaker bias signals - usually desirable because
of power constraints - while exploiting the intrinsic noise

oor of the device. A very detailed study of RT in this
class of systems will be published in a forthcoming paper.
In the following section, we present an attempt to char-

acterize performance via a signal-to-noise ratio (SNR)
which we may compute analytically in the limit of small
noise, by asymptotic expansions. We also comment on
the notion of a �nite observation time Tob.

V. TOWARDS PERFORMANCE OPTIMIZATION

Following the results of the preceding section, one may
ask the logical question: what is the optimal detector
con�guration for the detection of a given target signal in
a noise background? As discussed in earlier work [9], the
(theoretical) largest< �T > is obtained for zero bias sig-
nal. However, in real applications this observation must
be tempered by the constraint of �nite observation time
Tob. The noise intensity should be high enough to allow
switching events so that the system yields acceptable sen-
sitivity and SNR without the bias signal. Otherwise, a
bias signal must be applied. In the following we introduce
a quanti�er to take into account both the �T amplitude
and the observation time Tob and discuss the optimal
bias signal for given target amplitude, background noise
intensity, and potential barrier height.
We start by assuming that we have collected N sam-

ples for each of the residence times Tn�. The mean values
of the two RTDs are < Tn� >; as discussed above, these
may be computed directly from the crossing times data

sets (the subscript n denotes an experimental or simu-
lated quantity). The actual mean values < T� > are
then given by,

< T� >=< Tn� > + < ÆTn� >; < ÆTn� >=
�Tn�p
N

;

(16)

where �Tn� is the standard deviation of each distribution.
The second term represents the uncertainty inherent in
the measurement process. Then the mean di�erence in
residence times may be written in terms of the experi-
mentally obtained quantities:

< �T >=< �Tn > +Æ < �Tn >; (17)

where < �Tn >=< Tn+ > � < Tn� >. We can easily
obtain from (16),

Æ < �Tn >=
q
ÆT 2

n+ + ÆT 2
n� =

s
�2
Tn+

+ �2
Tn�

N

� �Tn

p
2=N; (18)

where we set �Tn+ � �Tn� = �Tn , since the distributions
are identical with the separation of means being the only
manifestation of the presence of the target signal.
Now, we introduce an output signal-to-noise ratio

(SNR) via the de�nition,

SNR =
< �Tn >

Æ < �Tn >
=

< �Tn >

�Tn

r
N

2
: (19)

We assume that we are given a �nite observation time

Tob = 2N
T++T�

2
, whence we can obtain

N =
Tob

T+ + T�
=

Tob

< �Tn > +2 < T� >
� Tob

2 < T� >
:

(20)

Hence, we �nally obtain for the SNR (note that it is a
function of all the system parameters, and, speci�cally of
the bias signal amplitude A):

SNR =
1

2

< �Tn >

�Tn

s
Tob

< Tn� >
: (21)

It is of interest to compute and analyse the SNR (21)
as a function of the bias amplitude A and other sys-
tem parameters, as a means to optimizing performance.
The simple threshold description of the ST as well as the
potential-based models (mean-�eld and equivalent stan-
dard quartic) a�ords us an analytic computation of the
SNR, which we now describe. It is most important to
reiterate, at this point, the stringent constraints on our
use of the threshold descriptions (4), (12), and (13). For
all three models, the noise standard deviation must be
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small compared to the threshold \height", with A be-
ing suprathreshold. In addition, the replacement of the
dynamics (1) and (9) by the simple static threshold de-
scriptions that lead to the deterministic results (12) and
(13) are predicated on a bias signal amplitude that is
suprathreshold. To get an analytical estimate of the SNR
(21), we resort to our simple ST model described in sec-
tion 2. We assume the noise-
oor to be small (compared
to the threshold setting), and to manifest itself in a 
uc-
tuating threshold with mean value b; the 
uctuations are
assumed to be Gaussian:

P (�) =
1p

2� �2
exp

�
� (� � b)2

2�2

�
: (22)

Let us �rst consider the case of sinusoidal bias signal.
Assuming that we start at t = 0, the �rst t1, to the
upper threshold (at +b) is now a random variable; its
probability may be readily computed [16] via a change
of variables, wherein the mean crossing time is well-
approximated by the deterministic crossing time as de-
rived in section 2:

P (t1) =
!Ap
2��2

cos!t1 exp

�
� A

2

2�2
(sin!t1 � sin!t10)

2)

�
;

(23)

which is normalized to unity over the interval 0 � t1 �
T0=4, which contains the �rst crossing to the upper
threshold, since the signal is well suprathreshold; note
that P (t1) = 0 outside this interval. In an analogous
manner, we obtain the �rst crossing time probability for
the lower threshold:

P (t2) =
!Ap
2��2

cos!t2 exp

�
� A

2

2�2
(sin!t2 � sin!t20)

2)

�
;

(24)

normalized to unity in T0=2 � t � 3T0=4. Note that these
density functions tacitly assume a determinstic threshold
crossing picture of the form described in section 2. The
bias signal must be well suprathreshold and the noise in-
tensity �2 also should be small compared to the threshold
height. In (23) and (24), the deterministic crossing times
t1;20 are given by (3).
In terms of the density functions (23) and (24), we

may write down formal expressions for the mean crossing
times < t1 >th and < t2 >th, the subscript denoting the
theoretical (in this case, approximate) quantity:

< t1 >th=

Z
T0=4

0

P (t1)t1dt1; (25)

and,

< t2 >th=

Z 3T0=4

T0=2

P (t2)t2dt2: (26)

The theoretical di�erence in residence times is then,

< �T >th=< T+ >th � < T� >th

= 2(< t2 >th � < t1 >th)� T0; (27)

in terms of the de�nitions (25) and (26). The standard
deviation in the denominator of (21) is computed via the
second moment of t1:

�Tn �
q
2(< t21 >th � < t1 >

2
th
) �

q
2�2

t1
; (28)

and the remaining term in the denominator of the square
root factor in (21) replaced by the di�erence in the mean
crossing times.
The integrals above must be computed numerically, in

general. We then readily observe that in the limit of small
noise variance and large bias amplitude, the averaged
quantities are well-approximated by their deterministic
counterparts (de�ned in section 2):

< t1;2 >th� t1;20; < �T >th� �TST0; (29)

where the deterministic residence times di�erence is given
in (4). We may also, in the regime of validity of the cor-
respondences (29), approximately evaluate the integrals
(25) and (26) using a second order Laplace expansion
[35], in which we retain terms upto O(�2) only. We then
obtain,

< t1 >th� t10 +
�
2

A2
sec!t10G10(t10) + h:o:t:;

< t2 >th� t20 +
�
2

A2
sec!t20G20(t20) + h:o:t: (30)

For the variance �2
t1
we obtain,

�
2
t1
� �

2

A2
sec!t10fG2(t10)� 2t10G10(t10)g; (31)

where we have de�ned,

G10(t10) = �
f
(2)
1

2�
(2)
1

(t10) +
f1�

(4)
1

8[�
(2)
1 ]2

(t10)

+
f
(1)
1 �

(3)
1

2[�
(2)
1 ]2

(t10)�
5f1[�

(3)
1 ]2

24[�
(2)
1 ]2

(t10); (32)

G20(t20) = �
f
(2)
1

2�
(2)
2

(t20) +
f1�

(4)
2

8[�
(2)
2 ]2

(t20)

+
f
(1)
1 �

(3)
2

2[�
(2)
2 ]2

(t20)�
5f1[�

(3)
2 ]2

24[�
(2)
2 ]2

(t20); (33)

G2(t10) = �
f
(2)
2

2�
(2)
1

(t10) +
f2�

(4)
1

8[�
(2)
1 ]2

(t10)

+
f
(1)
2 �

(3)
1

2[�
(2)
1 ]2

(t10)�
5f2[�

(3)
1 ]2

24[�
(2)
1 ]2

(t10); (34)
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and,

f1(t) = t cos!t; f2(t) = t
2 cos!t

�1(t) = �
1

2
(sin!t� sin!t10)

2

�2(t) = �
1

2
(sin!t� sin!t20)

2
: (35)

In the above expressions, the superscripts (e.g. �
(m))

denote the mth time derivative.
The mean crossing times (30) agree very well (in the

limit of small �=A) with the values obtained by numeri-
cally evaluating the integrals (25) and (26). Good agree-
ment is also obtained between the standard deviation
�t1 and its numerically obtained counterpart. In fact,
a glance at the equations (30) shows that at large sig-
nal amplitude (and/or small noise intensity), the crossing
times approach their deterministic values t1;20; in turn,
these behave as 1=A for large A. In this regime of opera-
tion, the residence times density functions (23) and (24)
collapse into gaussians having the form

P (t1) �
1p
2��2

s

exp

�
� 1

2�2
s

(t1 � t10)
2

�
; (36)

which is normalized to unity on [�1;1] and where

�2
s
= �

2

A2!2
, a \dressed" variance that is seen to decrease

rapidly with decreasing � and/or increasing A; the simu-
lations of section 4 have already shown this behavior. A
corresponding expression is obtained for P (t2). Note that
simple di�erentiation of the densities (23) and (24) shows
the modes approaching the mean values in the large A=�
limit. Of course we have already observed (equation (30))
that the average crossing times approach their determin-
istic counterparts in this limit.
In the gaussian limit, we can �nd a theoretical expres-

sion for the SNR. We start by computing the residence
times density function for the up-state for which indi-
vidual residence times are denoted by Tu = t2 � t1, t1;2
being the individual crossing times. The density function
of the residence times is obtained via the convolution

P (Tu) =

Z 1

�1

P1(Tu � t2)P2(t2)dt2 (37)

which, after some manipulations yields:

P (Tu) =
1p
4��2

s

exp

�
� 1

4�2
s

(Tu � t10 + t20)
2

�
; (38)

An analogous expression may be computed for the res-
idence times density function in the down-state. Then,
using the expression (4), setting �

2
Tn

= 2�2
s
, and taking

< T+ >= t20� t10 (with the deterministic crossing times
de�ned in (3)), we obtain the theoretical SNR as

SNR =
1

2

A!

�

�TST0p
T0 ��TST0

p
Tob: (39)

It is instructive to repeat the theoretical calculations
using the waveform (6) as the bias signal. One may com-
pute the residence times density function in a manner
analogous to the above. Starting with the expression
(22) for the noise probability density function, we may
obtain the crossing times density functions via a simple
change of variables:

P (t
(i)
1;2) =

1p
2��2

i

exp

�
� 1

2�2
i

(t
(i)
1;2 � t

(i)
1;20)

2

�
; (40)

which is also normalized to unity on [�1;1]. Here,
we have introduced, as we did for the sinusoidal bias

case above, the \dressed" variance parameter �2
i
� �

2
�
2

!2�22
.

Denoting by T
(i)
u = t

(i)
2 � t

(i)
1 the residence time in the

up-state, one obtains its density function in a manner
analogous to that used above for (38):

P (T (i)
u
) =

1p
4��2

i

exp

�
� 1

4�2
i

(T (i)
u
� t

(i)
10 + t

(i)
20 )

2

�
;

(41)

which is gaussian having mean t
(i)
20 � t

(i)
10 and variance

2�2
i
= 2�2�2

!2�22
. We readily observe that < �T (i)

>! 0

and t
(i)
20 � t

(i)
10 ! T0=2 when "! 0, as expected. The sep-

aration between the peaks in the residence times density
function is given by (8) exactly as predicted for the noise-
free case. The SNR (21) may now readily be estimated
for this waveform. We �nd,

SNR =
1

2

�2!

��

�T (i)p
T0 ��T (i)

p
Tob: (42)

The similar structure of equations (39) and (42) should
be noted. Note, also, that the SNR behaves like A=�

for the sinusoidal waveform, and like �2=� for the al-
ternate waveform (6). Hence, one obtains a performance
enhancement with decreasing noise intensity for both sig-
nal waveforms, as might be expected. For the sinusoidal
bias signal, one can increase the SNR further, by increas-
ing the bias amplitude A, however this must be weighed
against the requirement of lower power consumption as
well as the resolvability of < �T >: with increasing
A, < �T > decreases and the lobes of the RTD con-
verge to a single sharp peak at T0=2. For the waveform
(6) the situation is more complex, as seen in �gure (5);
given a noise-
oor, the response might be expected to
increase with increasing �2, peaking at the critical value
of �2c � 1

2
(A� b� "), and then decreasing. The SNR in

both cases is proportional to
p
Tob; increasing Tob leads

to improved statistics, although operational constraints
in speci�c applications may limit its magnitude.
It is of interest to actually �nd some measure of com-

parison between the readout schemes that employ the
RTDs as described in this work, and more conventional
readout schemes (see section 1) based on the output
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power spectral density (PSD). Such a comparison is pos-
sible in the context of a rigorous statistical analysis of
the device response; we address this in the next section.

VI. RESIDENCE TIMES ASYMMETRY OR

POWER SPECTRAL DENSITY? A

PERFORMANCE COMPARISON FOR

DIFFERENT READOUT SCHEMES

As shown in the previous sections, the bias signal wave-
form (6) can improve the performance (based on the sepa-
ration < �T > of the mean residence times) of this read-
out scheme under the appropriate conditions. We now
investigate whether this is suÆcient to make the RTD-
based technique competitive with conventional readout
schemes based on the PSD. In order to carry out this
comparison we must abandon the (somewhat simplistic)
ST and, instead, analyse one of the potential systems (2)
or (10), together with a more general performance mea-
sure. Since both potential systems behave similarly we
have used the equivalent DuÆng potential (10) which is
somewhat easier to analyse. We start with a stochas-
tic perturbation expansion of the dynamical system; this
leads us to expressions for the probability density func-
tions of the crossing times between the stable states. The
residence times based readout scheme will be seen to
be, at least asymptotically, as good as any other read-
out scheme based on time measurements. Finally the
residence time based scheme and the \conventional", i.e.
based on the PSD, scheme are compared via Monte Carlo
simulations.

A. Stochastic Perturbation Expansion

We start by introducing a stochastic process Z =
(�t; �t; xt) in R

3. The system described by equations (9),
(10), and (14) can then be written in the form of an (Itô)
stochastic di�erential equation (SDE)

dZt = g1(Zt) dt+ �g2(Zt) dWt; Z0 = z0; (43)

where Z componentwise is de�ned by0
@ d�t

d�t

dxt

1
A =

0
@ ���1

c
�t

1
axt � bx

3
t + "+ ht + 
�t

1
A dt+ �

0
@ 1

0
0

1
A dWt:

(44)

Here � is assumed to be a small noise standard devia-
tion and the second equation only expresses time as a
state variable. The asymptotic properties for � ! 0 of
equations such as (43) have been analyzed in [36]. If �
now is used as the formal time derivative of the Brownian
motion W , equation (43) can be written as

_Zt = g3(Zt; ��t); Z0 = z0; (45)

where

g3(u; �v) = g1(u) + �g2(u)v; u 2 R
3
; v 2 R:

In order to arrive at a sequence of approximations to the
solution Z to (43) the following perturbation ansatz is
made. The solution Z to (45) is formally expanded in
terms powers of � as

Zt = Z
(0)
t + �Z

(1)
t + � � �+ �

k
Z
(k)
t + � � � (46)

and the right hand side of (45) is, accordingly, also ex-
panded in terms of powers of �. If the coeÆcients on
both sides of the arisen equality

_Z
(0)
t

+ � _Z
(1)
t

+ � � � =

= g3(Z
(0)
t ; 0) + �

�
dg3(Z

(0)
t + �Z

(1)
t + � � � ; ��t)

d�

���
�=0

�
+ � � �

= g3(Z
(0)
t ; 0) + �

�
G31(Z

(0)
t ; 0)Z

(1)
t +G32(Z

(0)
t ; 0)�t

�
+ � � � ;

are then equated the following di�erential equations for
the correction terms (functions) emerge

_Z
(0)
t = g3(Z

(0)
t ; 0);

_Z
(1)
t

= G31(Z
(0)
t
; 0)Z

(1)
t

+G32(Z
(0)
t
; 0)�t; (47)

� � � � � � ;

where the matrix G31 and vector G32 are given by

G31(Z
(0)
t ; 0) =

0
@ ���1

c
0 0

0 0 0


 h
0(t) a� 3b(Z

(0)
t

)2

1
A ;

G32(Z
(0)
t
; 0) =

0
@ 1

0
0

1
A ;

and the initial conditions are Z
(0)
0 = z0; Z

(1)
0 = 0; � � �.

The details for the higher order corrections (for k � 2)
are easily calculated, see [36]. It turns out that all higher
corrections are linear in � and it follows therefore that
the vector process Zk+1 = (Z(0)

; : : : ; Z
(k))T obtained by

considering simultaneously the k + 1 �rst corrections in
(47) represents, formally, an SDE. In [36, Thm. 2.2] it
is shown that if the components of g1; g2 have bounded
partial derivatives up to k + 1:th order (inclusive), then
the SDE for Zk+1 is in fact well-de�ned with a strong

solution and the component
Pk

i=0 �
k
Z
(k) is an approxi-

mation to Z for which the error is asymptotically small in
mean square as � ! 0. Therefore a k:th order expansion
like (46) will henceforth be denoted as

Zt = Z
(0)
t

+ �Z
(1)
t

+ � � �+ �
k
Z
(k)
t

+O(�) (48)

where the remainder term is primarily to be interpreted
as asymptotically small in a mean squared sense.
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B. First Order Approximation

From (47) it is seen that the zero order approximation
is simply the deterministic ordinary di�erential equation
(ODE) that would be obtained by setting � = 0 in (43),
and that the �rst order approximation is obtained by
linearizing (43) around the nominal deterministic trajec-
tory obtained from the order zero approximation. We
now study the �rst order approximation and suppose that
(48) holds for k = 1 and that z0 is an interior point of
a domain D in R

3 such that the �rst exit time t0 of the

process Z
(0)
t from D is �nite. Suppose further that the

boundary is di�erentiable at Z
(0)
t0

, let �n be the exterior

normal to the boundary at Z
(0)
t0

and denote the �rst exit

time of the process Zt fromD by �� . Then if ( _Z
(0)
t0
; �n) > 0

we have [36],

�� = t0 + �
(Z

(1)
t0
; �n)

( _Z
(0)
t0
; �n)

+O(�); (49)

where the remainder term should be interpreted in the
sense used in (48). Hence the �rst passage time problem
for the time varying potential with colored noise can be
formulated as the problem of determining �� in (49) when
x0 < xlimit, where xlimit is a barrier for the variable x.
In this case �n becomes simply �n = (0; 0; 1)T and the

condition ( _Z
(0)
t0
; �n) > 0 in (49) reduces to _x

(0)
t0

> 0 where

x
(0) is the last component in the solution to the �rst

equation in (47).
Since W is a gaussian process, so is the �rst order ap-

proximation x
(1), and the �rst passage time �� is there-

fore a gaussian variable with mean t0 and a variance

V (��) = �
2
E(x

(1)
t0
)2

( _x
(0)
t0
)2

: (50)

Further, the (unique) solution to the second equation in
(47) is well-known to be (see e.g. [36]),

Z
(1)
t =

Z t

0

�(t; r)g2(Z
(0)
r ) dWr; (51)

where �(t; s) is the transition matrix from time s to t for
the 
ow (smooth vector �eld) on R

3 de�ned by

_Z
(1)
t = G31(Z

(0)
t ; 0)Z

(1)
t :

In this case the transfer matrix � is given by

�(s; t) = exp
�
�
Z

t

s

G31(Z
(0)
r
; 0) dr

�
:

Hence (51) can be written as

Z
(1)
t

=

Z
t

0

exp
�
�
Z

t

q

G31(Z
(0)
r
; 0) dr

�
g2(Z

(0)
q

) dWq ;

and (50) therefore becomes

V (��) = �
2

R t0
0

�nT�(t0; r)g2(Z
(0)
r )gT2 (Z

(0)
r )�T (t0; r)�n dr

( _x
(0)
t0
)2

= �
2

R t0
0

�
�3;1(t0; r)

�2
dr

( _x
(0)
t0
)2

; (52)

where �3;1(t0; r) is the third row, �rst column element of
�(t0; r). This element is plotted against the normalized
time t=T0 in �g. 6.
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FIG. 6. The element �3;1(t0; t) versus t=T0 for " = 0,
�
2 = 0:01, A = 0:8, 
 = 1, T0 = 100, start time = 0, and

the parameters a; b for the equivalent DuÆng potential are
computed via (11), for c = 4 in the mean �eld potential (2).

Since we have assumed a clearly suprathreshold bias
signal the previous crossing time, i.e. the start time, will
be in [0; T=2]. For all such starting times numerical calcu-
lations show that the next deterministic crossing time t0
is reasonably independent of the starting time [18]. Fur-
ther, as seen in �gure 6, the function �3;1 is close to zero
for all t 2 [0; T=2] and therefore the integral in (52) will
also be almost independent of the starting time. Hence
all crossing times will be approximately independent and
gaussian distributed with means and variance given by
(49) and (52), respectively. This has, of course, already
been observed in our crude (Schmidt trigger) model of
the preceding section in the large A=� limit, when A is
well-suprathreshold.

C. Analysis of Time Based Readout

The approximate crossing times distributions calcu-
lated in the previous section are important when eval-
uating performance measures for \time-based" devices.
Since we also want to compare the performance of these
devices with the one obtained under di�erent readout
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schemes, we have to abandon the SNR in (21) and move
on to a more general performance measure. There ex-
ist several possible ways to de�ne such a measure, how-
ever, since the expected value of the estimations is cor-
rect it seems natural to apply the classic MMSE [38]
(Minimum-Mean-Squared-Error Estimation) formalism,
and consider the estimator with the lowest variance of
the result to be the best. Note, though, that the variance
associated with all the estimators, will decrease towards
zero when the observation time increases. Therefore a
�nite observation time Tob is used, and the goodness cri-
teria of the sensors is de�ned as the variance of the esti-
mation given this observation time.
For residence times based devices there will be

n(Tcomp) switches between the stable states during the
observation time. As previously shown, all crossing times
will be approximately gaussian distributed with a mean
that depends on the target signal and a variance as in
(52). The dependence between the separation of the
mean crossing times and the target signal is linear for
small asymmetrizing target signals, i.e.,

" = �cl; (53)

where � is the change of crossing time and cl a constant.
This has already been mentioned in an earlier section,
and it can be con�rmed by a numerical simulation of the
system. The crossing times independence therefore af-
fords the possibility of extracting the optimal achievable
limit for any kind of estimator based on crossing times.
Let us de�ne �ui and �di as �ui = ui � u0 mod(T0) and
�di = di� d0 mod(T0), i � 1, where ui and di are the two
(di�erent) crossing times, from one state to the other,
and from the second back to the �rst. Here u0 and d0

are the �rst crossing times in the noise-free system in the
absence of the dc target signal. It is readily obtained that
�cross = �u = ��d (where �u = E(�ui) and �d = E( �di))
and �cross = �u = �d (where �

2
u = V (�ui) and �

2
d
=

V ( �di)). The set f�u1; �u2; : : : ; �un+1;� �d1;� �d2; : : : ;� �dng
will then consist of 2n + 1 independent identically dis-
tributed Gaussian variables with mean �cross and vari-
ance �2cross. In this case it is known from (53) that the
minimum variance estimator of " is given by

��opt =

P
n+1

i=1 �ui �
P

n

i=1
�di

2n+ 1
cl;

with a variance

V (�"opt) =
c
2
l
�
2
cross

2n+ 1
; (54)

which is easily proved by e.g. the information equality
[37].
In the previously described approach which measures

the mean di�erence in residence times < �T >, a dis-
placement �cross for the crossing times results in a mean
residence time di�erence of 4�cross. The estimate of the

target signal therefore becomes �"res =
cl

4
�T , where

�T =
1

n
(

nX
i=1

(di � ui)�
nX
i=1

(ui+1 � di)):

The variance of the residence times based estimator will
then be

V (�"res) = V (cl
�T

4
) =

c
2
l

16
V (�T )

where V (�T ) = V ( 1
n

Pn

i=1(2di�ui�ui+1)), which, with
the de�nition Yi = 2di � ui � ui+1, becomes

V (�T ) = V (
1

n

nX
i=1

(Yi))

=
1

n2
(

nX
i=1

V (Yi) +
X
i6=j

nX
j=1

Cov(Yi; Yj));

which by straight forward calculations can be shown to
be

V (�T ) =
8�2

cross

n
� 2�2

cross

n2
:

Hence, the residence times based estimator has the vari-
ance

V (�"res) =
c
2
l

16

�8�2cross
n

� 2�2cross
n2

�
=

c
2
l
�
2
cross

2n
� c

2
l
�
2
cross

8n2
;

which is slightly worse than the optimal time based es-
timator, (54), although the performance is comparable
(asymptotically) for large n and is much easier to im-
plement in an experiment. In most cases the residence
time based readout can, therefore, be considered to be
the optimal time based readout.

D. Comparison of Di�erent Readouts

In the previous section we illustrated the advantage
of applying the residence times based readout scheme, if
only sensors involving time measurements were consid-
ered. However, it is also instructive to analyse how this
readout performs compared to other, more conventional,
readout schemes, and to determine the optimal ampli-
tude of the bias signal. Such an investigation is likely
to be quite exhaustive, and beyond the scope of the cur-
rent paper. However, a good starting point is to compare
the residence times based readout scheme with a \con-
ventional" (PSD-based) readout, when a time-sinusoidal
bias signal is applied in each case. This computation will
just show the most appropriate amplitude of the sinu-
soidal bias, with the frequency kept �xed for both de-
vices. This investigation can later easily be expanded to
encompass larger signal families.
To compare the readouts, nsim; output trajectories

xt; t 2 [0; Tob] are calculated for each amplitude of the
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driving signal. Based on these trajectories nsim; esti-
mates of the target signal " are calculated with both the
residence times technique and the conventional (PSD-
based) technique, for each amplitude. The variances of
these estimates which, according to the preceding sub-
section, could be used as performance measures, are then
used to establish the best bias signal amplitude for each
method. However, it is also of interest to know how close
the sensors are to the optimal performance limit. The
optimal performance is given by the MMSE estimator of
" based on observations of xt over [0; Tob]. In case the
target signal " is a zero mean Gaussian random variable,
independent of both the initial condition x0 and the driv-
ing noise, the optimal performance is easy to calculate if
the noise is white. Therefore, if we instead of adding
the colored noise process �t to the state increment dxt in
(44) add a (scaled) Brownian motion increment �wgdWt

we obtain the following (\white noise") model on SDE
form

dxt =
�
f(xt) + "+ ht

�
dt+ �wgdWt;

where the function f represents the DuÆng potential,
f(x) = ax � bx

3. The MMSE "̂ of " based on xt; t 2
[0; Tob] for a system of this type is well-known [39, sec.
17.7] and given by

"̂ =
xTob � x0 �

R
Tob

0

�
f(xt) + ht

�
dt

�2wg

�2"
+ Tob

; (55)

where �2" is the variance of the zero mean Gaussian ran-
dom variable ". When �2

"
!1 the formula (55) becomes

identical with that for the Maximum Likelihood (ML)
estimate of " [39, sec. 17.7]. Thus, the ML estimator,
which is well-de�ned also when " is considered as an un-
known constant, is a limiting case of the optimal MMSE
estimator in (55) which is obtained when �

2
" ! 1 (i.e.

when " becomes \completely unknown"). The variance
of the ML estimator therefore provides a lower bound on
the achievable performance of any estimator of " when "

is an unknown constant.
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FIG. 7. The variance of the estimations versus the sinu-
soidal bias signal amplitude for the residence times based
(solid line), PSD based (dashed line), and MLE based (bot-
tom dash-dotted line) method. Here the parameters a; b; and
! are as in �gure 6, 
 = 1, T

ob
= 3000, and the white noise

intensity is �wg =
p
2 � 10�6.

In �g. 7 the variance of the estimates versus driving
signal amplitude is shown for the two di�erent kinds of
readout schemes (residence times, and PSD-based) and
the MLE. As seen, the residence times based readout is
nearly as good as the PSD-based case, although the sinu-
soidal bias signal may not be optimal for this sensor (at
least under the parameters considered here). A triangu-
lar wave, or the waveform (6) should improve the results;
as already discussed, these waveforms provide local lin-
earity where the waveform crosses the threshold. Clearly
though, both devices perform much worse than the MLE,
and it is obvious that both measuring techniques are non-
optimal. From these data it therefore would appear that
a MLE-based readout, or a residence times based readout
with a carefully selected driving signal, would be prefer-
able compared to a PSD-based readout. However, one
very surprising result indicates that care should be taken
when interpreting the data. The variance of the estimates
decreases when the bias amplitude decreases, implying
that a weak bias amplitude might be preferable. For the
PSD-based readout this is a counterintuitive result since
in practical scenarios these sensors are normally driven
with a large amplitude bias signal. It is therefore pos-
sible that the simple models of section 2 that we use to
describe our sensors, may not be good enough. In this
context it should be noted that in real sensors involving,
e.g., ferromagnetic cores, the noise-
oor is usually depen-
dent on the driving signal. This is also indicated by the
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experimental results shown in �gure 10. In addition, the
driving signal, if applied at a suÆciently high frequency,
can lead to frequency-dependent hysteresis behavior in
the device, behavior that has not been covered by our
phenomenological description. Clearly, an investigation
of these issues should precede a rigorous investigation
(beyond the relatively simple discussions, in this paper,
of the system response to non-sinusoidal waveforms, ex-
empli�ed by the signal (6)) into the optimal signal wave-
form for a particular readout scheme. However, despite
these unresolved issues, we can at least conclude that
the time series of the output voltage from the 
uxgate
probe seems to contain more information about the tar-
get signal than what can be extracted via conventional
(PSD-based) and residence times based readouts.

VII. EXPERIMENTS

In order to reconcile some of the ideas of this paper
to experimental data some preliminary experiments were
performed on a test device, a very simple laboratory re-
alization of a residence times based 
uxgate magnetome-
ter. A pre-magnetizing coil with 50 turns and a pick-up
coil with 135 turns were wound in a transformer-like con-
�guration on a multi-domain ferromagnetic strip-wound
ring core characterized by a coercivity of less than 3 A/m.
The diameter and the cross-sectional area of the ring were
26 mm and 1.9 � 2.8 mm2, respectively. A ring core
probe used in this con�guration is not expected to pos-
sess full directional sensitivity and response to external
�elds [2]. It can, however, serve the purpose of demon-
strating the basic principle, without making any claims
on living up to the possible operational performance of
a 
uxgate magnetometer of this type. Note that new,
improved probes based on straight rod cores are under
fabrication, and the results for these devices will be pub-
lished later.
A function generator producing a triangular wave with

variable amplitude A and frequency was connected to
the input of the device. A frequency of 100 Hz was
used for all measurements; this allows one to use a non-
frequency based description of the crossing dynamics,
since frequency-dependent hysteresis in the core response
is very small and also the bias signal has a minimal ef-
fect on the noise 
oor. The noise 
oor is assumed to be
gaussian bandlimited, which is a good assumption for the
new genre of \single-domain" ferromagnetic probes; non-
gaussian (i.e. Barkhausen) noise may in fact be present
in these cores, but it is signi�cantly smaller (in rms am-
plitude) than the gaussian noise. The 100Hz driving fre-
quency also ensures that the bias signal does not fall into
the low-frequency noise riser.
The time evolution of the input current and the output

voltage were measured with a 16-bit A/D-converter using
a sampling rate of 40 kHz. Alternatively, the pick-up coil
was connected to a universal counter for measuring the

residence times T+ and T�. The bias �eld was estimated
from the input current by applying Ampere's law on the
ring geometry.
The zero target measurements were performed inside a

shielded cage consisting of concentrically arranged (and
lidded) cylindrical shells made of �-metal and copper.
The measurements with target signal were performed in
the presence of the geomagnetic �eld, which served as the
target. They were made after maximizing the e�ective
target strength by simply rotating the device until a max-
imum di�erence between < T+ > and < T� > was found;
at the location of the experiment this corresponded to a
�eld strength of about 50 �T (the magnitude of the geo-
magnetic �eld).
Figure 8 shows the output voltage from the pick-up

coil for four di�erent amplitudes { two subthreshold
and two suprathreshold { of the bias signal resulting in
non-saturated and saturated magnetization, respectively.
These measurements were performed without target �eld.
The output voltage (this is our experimental observable),
which is proportional to the derivative of the magnetic

ux in the core, consists a number of successive spikes
corresponding to switches between positive and negative
magnetization (relative to the magnetic state when the
bias signal was applied). A shift of the spike positions
from the extrema towards the zero-crossings of the bias
signal can be observed as the core material is gradually
driven deeper into saturation. For the highest bias am-
plitude the saturated 
ux density is rapidly reached and
the (sharp) spikes nearly coincide with the zero-crossings
of the bias signal.
The time evolution of the magnetic 
ux density B in

the core material and the magnetization curves were cal-
culated from the experimental data by integrating the
output voltage from the pick-up coil. For each set of data
the unknown integration constant was assigned a value
in order to make the times series of B centered around
zero. The results for two amplitudes of the bias signal (A
= 2 and 20 A/m, corresponding to nearly saturated and
saturated cores, respectively) are shown as solid curves
in �gure 9. Due to hysteresis e�ects (irreversible mag-
netization) changes in the magnetic 
ux B in the core
\lag behind" changes in the magnetizing bias �eld H . In
�gure 9 this can be observed as a distortion of B from
the triangular form of the bias signal and the appearance
of hysteresis loops in the magnetization curves. For the
saturated case (right panels) B has nearly a rectangular
wave form and long tails develop in the magnetization
curves.
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FIG. 8. Output voltage from the pick-up coil for four dif-
ferent amplitudes of the bias �eld. From left to right A � 20,
3.3, 2.0, and 1.4 A/m. Bias period T0 = 0:01 s. The dashed
curve is a guide for the eyes, and indicates the phase of the
bias �eld.

In order to study the ability of the mean �eld model
with the "soft" potential (equation 2) to reproduce the
experimental details of the ferromagnetic behavior of the
core, simulations of B versus time and hysteresis loops
were made. In these calculations a dimensionless tem-
perature T = 1=1:4 (c = 1:4) was used. The results are
shown as dashed curves in �gure 9. For the saturated
case (right panels) the experimental data are quite well
described by this model. For the non-saturated case (left
panels), however, only the time evolution of B seems to
be fairly well matched. For even lower bias amplitudes
the model is unable to reproduce either the time series or
the hysteresis loops. Also the equivalent quartic model is
unable to reproduce the salient features of the time series
and the hysteresis loops at very low (subthreshold) bias
amplitudes; this model also fails at extremely high (very
suprathreshold) bias amplitudes. Note, however, that
despite these discrepancies, both models can reproduce,
to a very good approximation, the qualitative behavior
in e.g. < �T > also for very high suprathreshold bias
signals.
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FIG. 9. Upper panels: Magnetic 
ux density versus time of
the ferromagnetic ring core for A = 2 (left panel) and 20 A/m
(right panel). Lower panels: The same measurement results
shown as hysteresis loops. Solid curves are calculated results
from experimental data and dashed curves are simulated data
using the "soft" potential (2) with c = 1:4 and A = 4:0. Note
that the B-axis has been rescaled for the simulations in order
to be able to compare it to the experimental data.

Figure 10 shows the (gaussian-like) residence time dis-
tributions for three di�erent bias amplitudes A. The data
were compensated for o�-sets (in the range of about 0.5 to
30 �s, with the larger value corresponding to the case of
the weakest bias signal) which were obtained from zero-
�eld measurements inside the shielded cage. In all cases,
the center RTD corresponds to the case of zero target sig-
nal. In the presence of a target signal the residence times
T+ and T� are di�erent, and consequently the quantity
< �T >=< T+ > � < T� > can be used as a mea-
sure of the asymmetry-producing target �eld. Within
our experimental precision a linear relationship between
the target signal and < �T > was found. This is in
good agreement with expectations for a pulse position
based read-out technique [2]. Such a relationship should
be expected (as already discussed) from the RTD-based
readout when " is small; it has already been theoreti-
cally computed in the limiting case of zero bias signal
[9]. From the slope of a linear �t to the data a response
of about 7 ns/�T for our simple test device was found,
when it was driven with a 10 kHz bias frequency. Note
that this result is not expected to be representative for a
well designed device (currently under construction).
In �gure 10 it can readily be seen that the e�ect of low-

ering the bias amplitude is twofold. First of all there is
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an increase in < �T > for a given target signal strength,
and second it leads to a wider spread in the residence
times. For example, lowering the bias amplitude from
41 to 20 A/m appears to result in a performance im-
provement which can be observed as a larger increase in
< �T > as compared to the dispersion of the RTDs,
i.e. the gained response to external target �elds seems
to be larger than the cost due to a wider spread in the
residence times. However, further lowering the bias am-
plitude down to 4.1 A/m (where the core material is only
weakly saturated) a much larger spread in the residence
times is observed, and the background noise makes its
presence clearly known in the density function for small
A.
There may be many reasons for this large dispersion

at low bias amplitudes. One possible explanation could
be that due to the less saturated core material (and pos-
sible memory e�ects caused by "non-complete" magnetic
domain alignment along the bias �eld) the magnetic hys-
teresis loop is not well de�ned. This could, then, lead to
varying residence times because di�erent paths around
the hysteresis loop may be taken for each cycle. Even
in this situation, however, one observes a well-de�ned
< �T > which, in an experiment, may readily be com-
puted using the arithmetic mean of a large number N of
observed crossing events. We reiterate that, in practical
scenarios, a computation of the average residence times
via the arithmetic mean is suÆcient; it is not necessary to
compute a density function and then compute the means
via integration. Hence, the accuracy of the measurement
of < �T > depends on the magnitude of N . Of course,
the magnitude of N is constrained by the observation
time as already discussed in section 5.
Despite the crudeness of the setup the experimental

�ndings do qualitatively agree with the results of the
simulations shown in �gure 4. This, in turn, has lead
to the (currently ongoing) construction of a 
uxgate
magnetometer utilizing the residence-times-based read-
out scheme. One important task when optimizing the
bias signal for a real device would then be to �nd the
optimum balance between the gain in responsivity and
the increase in the noise level of the residence times.
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FIG. 10. Residence time distributions for three di�erent
amplitudes (=41; 20, and 4:1 A/m, from top to bottom pan-
els) of the triangular bias signal. The data have been nor-
malized to the period T0 = 10 ms. Dashed curves: Zero
target case. Solid curves: E�ective target �eld of about 50
�T. The data have been compensated for o�-sets. The ef-
fect of decreasing the bias amplitude is twofold: For a �xed
target �eld the separation < �T > grows with decreas-
ing bias amplitudes, at which point the 
uctuations due to
the noise-background also manifest themselves in the density
function.

VIII. CONCLUSIONS

In this work we have presented an alternative to quan-
tifying the output of a nonlinear dynamic system via the
power spectral density. The residence times based tech-
nique is relatively simple to implement in practical sce-
narios; all that is required is for the detection/processing
electronics to keep track of threshold crossing events and
maintain a running average, the arithmetic mean, of the
residence times in each stable state. Then the quantity
< �T > provides a measure of the unknown target sig-
nal that created the asymmetry and, therefore, a nonzero
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< �T >. While the target signal in this work is taken
to be dc, it is clear that a modi�cation of the residence-
times based readout scheme could be e�ected for more
complex signals. It is also clear that the choice of the
bias signal waveform is important to the issue of overall
sensitivity de�ned, roughly, as the ability to discriminate
the means of the residence times densities in the pres-
ence of a small asymmetrizing target signal. The bias
signal amplitude does not need to be extremely large.
In fact our results, and those of our earlier publication
[9], indicate that the best response to the target signal is
obtained for zero bias signal, in theory, at least; in this
scenario the level crossing events are solely controlled by
the background noise. In practice, however, unless the
noise level is high enough to induce an acceptable (spon-
taneous) crossing rate, one must impose the bias signal
to control the crossings; in this case the noise leads to a
spread in the crossing rate about its deterministic value,
when the bias signal is suprathreshold. Clearly, in such
a situation, it would be preferable to adjust the system
parameters (e.g. the constant c in the potential energy
function (2)) so that the energy barrier is lowered when
weak target signals are to be detected in a noise-
oor.
Absent such a control, however, adjusting the bias am-
plitude A, or the triangular signal amplitude �2 when we
use the bias waveform 6, e�ectively raises or lowers the
energy barrier. With a large background noise
oor, the
density functions tend to merge, leading to inaccuracies
in the computed < �T > unless a large number N of
observations can be made. Increasing A enables one to
better resolve the density functions, even as it leads to
a greater power requirement. Hence, one must also con-
sider the tradeo� between sensitivity and power when
designing a sensor aimed at a particular class of target
signals. Noise e�ects become more important as the bias
signal amplitude approaches the threshold; the RTD is
no longer gaussian, it develops tails and its mean and
mode separate.
A theoretical computation of < �T > has been carried

out in the regime of large (suprathreshold) bias signal
and small noise; in this (gaussian) limit, the dynamical
system is well-approximated by a non-dynamical dual-
threshold representation. For small target signals one
easily obtains < �T >/ ". The separation < �T > is,
further, very weakly dependent on the noise in the large
A=� limit (the gaussian limit that has featured so promi-
nently in our discussion). In this limit, the noise statis-

tics, also, do not have a signi�cant e�ect on < �T >.
For subthreshold bias signals, the theory of this paper
breaks down. In practical operation however, one can
still compute < �T > by simple averaging as done for
the suprathreshold bias case; in this case, however, the
mean value separation is noise-dependent and one may
optimize it using the SR scenario [6]. The RTD for sub-
threshold bias signals can be multimodal (depending on
the noise variance, signal amplitude and potential barrier
height), however, in the optimal case it collapses into a
single near-gaussian peak at T0=2. This case underpins

the interpretaion of SR as a bona �de resonance [7]. Note
that for the subthreshold bias signal case, one may com-
pute [13], the residence times in the A=� � 1 limit (the
oft-discussed SR regime). The case of strong (but still
subthreshold) bias signals and weak noise, i.e., A=� � 1
has recently been analysed in some detail [40]; in this
regime, one obtains a near-exponential dependence of
< �T > on the asymmetrizing signal �, indicating that
optimal sensitivity in this technique might be achievable
for bias signal amplitudes hovering around the threshold
of the energy barrier. Assuming prior knowledge of the
sensor characteristics, it is reasonable to expect that one
could determine the energy barrier height in practical ap-
plications, thereby a�ording a convenient route to setting
the known bias amplitude.
The bias frequency does not �gure prominently into

the crossing statistics when we work in the non-
dynamical limit; however, in the general case, the fre-
quency must be carefully selected. In some ferromagnetic
cores, employed for instance in the simple magnetometer
used in our experiments, the (non-gaussian) Barkhausen
noise 
oor depends on the bias frequency, through its ef-
fect on the slip dynamics of the domain walls; usually
there exists a (material-dependent) optimal frequency at
which these e�ects are negligible [30]. Also, for the case
of a soft ferromagnetic core the width of the hysteresis
loop, which determines the energy dissipated per cycle,
can depend on the frequency and amplitude of the bias
signal.
Keeping the bias signal amplitude and frequency as

low as possible can lead to signi�cantly reduced on-board
power; in a real device, this can be an important consid-
eration. However, clearly, the tradeo� between onboard
power and the observation time Tob - which determines
the accuracy of the experimental estimate of the quantity
< �T > - eventually dictates how the sensor is operated.
The proposed technique is part of the genre of sys-

tems operated based on their level crossing dynamics; it
should be readily applicable to a large class of dynamic
sensors that are operated as detectors of very small tar-
get signals, particularly when the detection scheme and
the sensor dynamics lend themselves to operation under
a known bias signal whose waveform must be carefully
selected for optimal sensitivity. In this context we reiter-
ate that the time-sinusoidal bias signal is not necessarily
the waveform that yields the best output sensitivity (or
resolution); the rigorous analysis of section 6 indicates,
in fact, that with the time-sinusoidal bias waveform one
might expect the RTD-based approach to yield sensitiv-
ity comparable to conventional (PSD-based) techniques.
However, we hasten to point out that, while the analysis
of section 6 was carried out in the context of a sinu-
soidal bias waveform, one would one would usually use
a triangular waveform, or the waveform (6) in practice.
Both these waveforms outperform the sinusoidal wave-
form, and they also enable the RTD-based approach to
outperform conventional processing as has been observed
in experiments (but not shown in this work). In addition,
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one must take into account the inherent simplicity of the
RTD approach, particularly with regard to the readout
electronics and processing. Typically, a simple counting
circuit is required, in contrast to the feedback electronics
that are usually a part of readout schemes; more compli-
cated electronics usually add more noise to the already
present noise-
oor. By contrast, in our simple experi-
ments on the prototype nonlinear dynamic sensor (the

uxgate magnetometer) described in the preceding sec-
tion, one can implement the RTD readout with just one
excitation coil and one detection coil without the need
for implementing a di�erential structure (usually done to
cancel out steady ambient magnetic �elds). Most impor-
tantly, the RTD approach can be implemented with low-
amplitude and low-frequency bias signals which result in
signi�cantly reduced on-board power requirements.
In addition to the experiments described in the preced-

ing section, another laboratory prototype 
uxgate mag-
netometer, using the RTD technique, has already been
constructed and operated via the procedure described
in this work. It is a planar device, developed in PCB
technology, and boasts dimensions small enough to �t
comfortably (minus the readout electronics) into a small
cigarette pack. The instrument employs a triangular
bias waveform and a very simple digital counter to keep
track of the crossing events [41]. The laboratory device
(excluding the readout electronics) costs about $1, and
has an amorphous metal (or metallic glass alloy, Met-
glass) core; current experiments, ongoing at the Univer-
sity of Catnaia, Italy, are aimed at enhancing its sensitiv-
ity/resolution by incorporating this device into a coupled
array, with the ultimate goal of constructing a network
of 
uxgates using MeMs technology.
It is worth pointing out that the idea of threshold cross-

ing events leading to a quanti�cation of external signals
is deeply rooted in the computational neuroscience reper-
toire wherein one analyses the response of a single neu-
ron, or even a small network, to a stimulus by examining
the statistics of the point process generated by succes-
sive threshold crossings or \�rings". This point has al-
ready been touched on in section one, but it is important
enough to reiterate in this section: our proposed mode
of operation actually leads to an implementation of these
sensors as \neural"-like devices.
Subsequent work must focus (among other issues) on

the determination of the optimal bias signal waveform
in terms of speci�c sensor and operational parameters;
clearly, there could be other waveforms besides the si-
nusoidal bias and the waveform (6) that might be opti-
mal under di�erent conditions. Continued investigations
into the (non-gaussian) material-dependent noise 
oor
are also important although, as exploited in this work,
this noise may e�ectively be characterized as gaussian
bandlimited noise subject to the appropriate fabrication,
materials and geometry constraints.
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