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Abstract

We study the spectral response of a nonlinear system of coupled oscillator equations representing the overdamped two-
junction (dc) superconducting quantum interference device (SQUID) loop; this system admits of static or oscillatory
solutions for the autonomous case. In the presence of a weak time-dependent sinusoidal target signal and noise we find,
in the regime of oscillatory or “running” solutions, an enhancement of the response (characterized by an output signal-
to-noise ratio at the drive frequency) as a function of the intrinsic device parameters as well as externally controlled bias
parameters that determine the nature of the long-time solutions. Modeling the device via a derived input1output transfer
characteristic yields results in good agreement with recent experiments. This work offers a technique whereby the response
of nonlinear devices with similar response characteristics may be optimized without directly adjusting the system noise. c©
1999 Published by Elsevier Science B.V.

PACS: 05.40.+j; 02.50.Ey; 02.30.Hq; 85.25.Dq

Periodically modulated nonlinear stochastic sys-
tems have received considerable attention lately,
exhibiting a richness of noise-mediated resonance
behavior in the response. Recent experiments and cal-
culations have explored variants of one such effect,
stochastic resonance (SR) (for good overviews see
Ref. [1]), in a single-junction (rf) superconducting
quantum interference device (SQUID) loop [214]. In
this Letter, we offer a theoretical description of some
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intriguing behavior seen in recent experiments [5]
involving a two-junction (dc) SQUID operated as
a nonlinear dynamic detector of very weak time-
sinusoidal magnetic signals. The observed behavior
can be externally controlled by adjusting an applied
dc magnetic flux and bias current, without directly
adjusting the device noise, in contrast to SR scenarios.
This additional freedom of control is quite valuable,
since it allows significantly higher output power and
signal-to-noise ratio (SNR).

The rf SQUID has a potential energy function that
changes from multistable to monostable as bias pa-
rameters are adjusted, but the dc SQUID’s potential
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energy function changes from multistable to unstable.
Specifically, the dc SQUID is an example of a dy-
namic system that is characterized by a (in this case,
2D) potential energy function and admits of one or
more static solutions corresponding to minima of the
potential, as well as oscillatory or “running” solutions
when the bias conditions remove the potential minima.
When the potential has minima the output flux char-
acteristic is hysteretic and the long-time solutions of
the dynamics (in the absence of the sinusoidal driving
term) are static, not oscillatory. When the bias condi-
tions remove the potential minima, the time-averaged
output flux characteristic becomes non-hysteretic, and
for our purposes the signal processing properties of
the dc SQUID become describable via a static, nonlin-
ear input1output function or “transfer characteristic”
(TC).

In the SR effect [1] the output power or output
SNR, measured at the frequency of a small sinusoidal
target signal, passes through a maximum as a function
of the input or device noise power; the critical noise
intensity at the maximum can be related to a matching
of deterministic and stochastic time scales. In contrast
to such an SR scenario, here we study the maximiza-
tion of the output SNR as a function of (experimen-
tally controllable) dc bias parameters. Adjusting the
bias parameters to move out of the hysteretic regime
and into the regime of running solutions greatly in-
creases output power and SNR. The maximization,
obtained for a fixed input SNR and without directly
adjusting the system noise, is independent of any time
scale matching and is not SR. We note that, in the sig-
nal detection context, alternate (to the output SNR)
measures of performance involving an information-
theoretic characterization of the system response, have
been proposed recently [6]; these measures take into
account the entire probabilistic structure of the re-
sponse and permit one to characterize the response to
aperiodic signals, when the output SNR can become
ill-defined.

The dc SQUID consists of two Josephson junctions
inserted into a superconducting loop [7]; we assume,
for convenience, that the insertion is symmetric. When
used as a magnetometer, the dc SQUID’s “input” is an
externally applied magnetic flux Φe. Conventionally,
the voltage measured across the Josephson junctions is
taken as its “output”. Instead, we take the circulating
current Is (experimentally measured via the associated

“shielding flux”) as output. This setup was developed
for studying SR in dc SQUIDs operating in a hysteretic
regime. However, much higher output signal strengths
and SNRs were discovered by using dc bias currents
large enough to take the device beyond the hysteretic
regime into the regime of running solutions. These
higher input1output gains result from the rapid change
of Is with Φe where the dynamics change from static
to oscillatory. In what follows, we first derive the TC
from dynamical equations describing the dc SQUID.
We then go on to compute the output SNR at the
frequency of an applied sinusoidal signal.

An external magnetic field produces a geometrical
flux Φe inside the loop; in turn, the flux quantiza-
tion condition [7] leads to an induced circulating (or
shielding) current Is that screens the applied flux so
that the total loop flux may be cast in the form

Φ = Φe + LIs, (1)

L being the loop inductance. Further, the single-
valuedness of the wave function around the loop leads
to the phase continuity condition

δ2 − δ1 = 2πn− 2πΦ/Φ0, (2)

n being an integer, and Φ0 ≡ h/2e being the flux
quantum. Taking n = 0, we obtain

β
Is

I0
= δ1 − δ2 − 2π

Φe

Φ0
, (3)

where I0 is the critical current of the junctions (as-
sumed identical) and β ≡ 2πLI0/Φ0 is the nonlinear-
ity parameter. In the absence of noise and the target
magnetic flux (taken to be sinusoidal in this work),
we can use the RSJ model to write down equations
for the currents in the two arms of the SQUID via a
lumped circuit representation [7]; expressed via the
Josephson relations δ̇i = 2eVi/} linking the voltage
and the quantum phase difference across the junction
i, these equations take the form

τδ̇1 = 1
2 Ib − Is − I0 sin δ1,

τδ̇2 = 1
2 Ib + Is − I0 sin δ2, (4)

where τ ≡ 1
2}Re, R being the normal state resistance

of the junctions. The dc bias current Ib is applied sym-
metrically to the loop. In experiments [5], the bias
current and applied flux are externally controllable.
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Eqs. (4) can be rewritten in terms of the gradient
of a two-dimensional potential energy function as δ̇i =
∂U/∂δi, with the time rescaled by τ, and the potential
function defined as

U(δ1, δ2) = − cosδ1 − cos δ2 − J(δ1 + δ2)

+ (2β)−1(δ1 − δ2 − 2πΦex)2, (5)

where we introduce the dimensionless bias current
J ≡ Ib/2I0 and applied flux Φex ≡ Φe/Φ0. Two dis-
tinct regimes of operation, corresponding to supercon-
ducting and running states, are possible.

When the potential (5) has minima, the SQUID is
superconducting. The symmetry of the potential and
the energy barrier height between stable states can be
controlled, respectively, by adjusting the parameters
Φex and J. This configuration (including the problem
of thermal activation out of the stable states of the po-
tential) has been discussed in the literature [8]. After
a brief transient, the phase angles δ1,2 achieve con-
stant steady-state values and one obtains the condi-
tions for the minima via δ̇1,2 = 0. This leads to the
current equations:

Ib = I0(sin δ1 + sin δ2),
2Is = I0(sin δ2 − sin δ1), (6)

whence, using the continuity condition (2), the cir-
culating current may be cast in the form Is/I0 =
− cos 1

2 (δ1 + δ2) sinπ(Φ/Φ0). Noting (from (6))
that sin δ2 = J + Is/I0, and using (2) again, we may
write down the following transcendental equation for
the circulating current in the superconducting regime:

Is

I0
= − sin

(
πΦex +

βIs

2I0

)
× cos

[
sin−1

(
J +

Is

I0

)
+ πΦex +

βIs

2I0

]
. (7)

Eq. (7) may be solved numerically for the circulating
current; the ensuing TC is periodic in the applied flux
Φex and possibly hysteretic, with the hysteresis loop
width controlled by the bias current J. For J = 0 one
obtains hysteresis for any nonlinearity β; for 0 < J 6
1, hysteresis occurs over some range of β.

Assume J is large enough to put the SQUID in the
nonhysteretic regime. Let Φex1 be the critical flux at
which, as Φex is increased from 0 to 1

2 , the poten-
tial’s minima disappear and running solutions replace

static ones. For Φex increasing from 1
2 to 1, running

solutions disappear at Φex2 ≡ 1 − Φex1. The quan-
tities Φex1, Φex2 will aid us in determining the TC
and, later, the output SNR. At Φex = Φex1,2, the func-
tion f = sin δ1 + sin δ2 − 2J will have a maximum
that coincides with f = 0; i.e., a plot of f versus δ1

(with δ2 given by the continuity condition) touches
the δ1 axis from below. To determine the location of
this maximum one maximizes f, subject to the con-
tinuity condition; i.e., one constructs the function g =
f + λ(δ2 − δ1 − β sin δ1 + βJ + 2πΦex), and elimi-
nates the Lagrange multiplier λ while solving for δ1c

via the conditions ∂g/∂δ1,2 = 0. Finally we obtain

sin δ1c = 2J −

√
1−

(
cos δ1c

1 + β cos δ1c

)2

,

cos δ2c = − cos δ1c

1 + β cos δ1c
. (8)

By selecting the appropriate solution of (8) and us-
ing (3), (6), and the continuity condition, one ob-
tains Φex2 (up to an integer constant). In the interval
Φex1 6 Φex 6 Φex2, the solutions to the dynamic equa-
tions (4) are oscillatory at long times. The oscillation
period tends to infinity very close to Φex1, decreases as
Φex → 1

2 , and increases again as Φex → Φex2. The in-
terval (Φex1, Φex2) of the running solutions increases
with J. Note that an approximate solution to the sys-
tem (8) can be constructed by assuming (for large β)
a zero-order solution δ10 ≈ sin−1(2J − 1), whence
one obtains to first order δ1c ≈ δ10−h(δ10)/h′(δ10),
with the identification h(δ1c) ≡ 2J − sin δ1c − {1 −
[cos δ1c/(1 + β cos δ1c)]2}1/2 and the prime denot-
ing differentiation with respect to δ1c.

Fig. 1 shows Φex1 versus the circulating current J
for different β. The solid curves are obtained via nu-
merical solution of the system (8), while the dashed
curves represent the perturbation approximation out-
lined above. As expected, the approximation works
best at large β; with decreasing β, it works best at
the higher J values. For a given β, the critical J at
which the running solutions first develop corresponds
to Φex1 = 1

2 .
The running solutions regime has been investi-

gated [9] mainly via a computation of the voltage
across the Josephson junctions; however, our present
considerations require us to consider the circulating
current instead. Fig. 2 shows a sequence of TCs ob-
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Fig. 1. Critical applied flux Φex1 versus dc bias current J for
β = 0.4, 2.0, 4.0 (reading from left-to-right). Solid curves: nu-
merical solution via (8); dashed curve: theoretical approximation
(see text).

Fig. 2. Transfer characteristic: time-averaged circulating current
(see text) Is/I0 versus applied flux Φex for β = 0.4.

tained via numerical solution of (4); they show good
agreement with the experimentally obtained TCs [5].
The TC is periodic in Φex with only one complete Φex

cycle shown for each J. In the static solutions regime,
the TC is exactly reproducible by solving the tran-
scendental equation (7). The demise of hysteresis for
increasing J is clearly evident. In the running regime,
the average circulating current is obtained from the

solution of (4) by performing a time-average over the
period of oscillations in δ1,2(t); in experiments [5],
this is the measured quantity since the oscillation
frequency is very high. The TCs are symmetric about
Φex = 1

2 , at which point the average circulating current
vanishes. Interestingly, we observe a small “ripple”
(centered on Φex = 1

2 ) almost spanning the regime of
the running solutions in each case. This ripple is also
present in experimentally obtained TCs [5]. Note the
vertical scales in Fig. 2: with increasing J the TCs
decrease in range, resulting in generally less signal
gain. With higher β (not shown), the disappearance
of hysteresis and concomitant appearance of running
solutions occurs at higher J values. This can be ex-
pected through examination of the potential function:
larger nonlinearity β implies deeper wells, and a
greater J is required to remove the wells (recall that
J 6 1; for J > 1, one always gets only running solu-
tions). Also, with higher β’s the “ripple” only occurs
for J’s slightly less than unity, where the response is
very weak; therefore, this feature may not be evident
in such SQUIDs. We note, in passing, that a total
flux Φ or shielding flux Φs ≡ LIs versus Φe TC can
readily be computed from the Is versus Φe TC.

An analytic approximation to the TC for the case of
small β captures most of the interesting behavior for
J < 1. In this regime, one can obtain an approximate
solution in the running state by introducing the sum
and difference variables δ = 1

2 (δ1 − δ2), Σ = 1
2 (δ1 +

δ2), which obey the equations

δ̇ = −2β−1(δ− 1
2πΦex)− cosΣ sin δ,

Σ̇ = J − cos δ sinΣ (9)

(with the time rescaled by τ), and then realizing that
δ = 1

2πΦex is an approximate solution of the δ equation
for very small β. Substituting this solution into the Σ
equation, we may perform the integration to obtain

Σ(t) = 2 tan−1

{
Ω

J
tan

[
1
2Ωt− tan−1

(
cosπΦex

Ω

)]
+

cosπΦex

J

}
, (10)

where Ω ≡ (J2 − cos2 πΦex)1/2. At Φex = 1
2 , the

above expression reduces to Σ = Jt. A more accurate
value for δmay now be obtained by re-substituting the
solution (10) into the δ equation. The solution (ob-
tained numerically) may be used to compute the TC
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via (3), following the above-described time-averaging
over the period of the running solutions. The resulting
TC is qualitatively similar to the one obtained via di-
rect numerical solution of (4) in the running solutions
regime, with the agreement improving as β decreases
and J increases.

Having obtained TCs, we can move on to calculat-
ing output signal power and SNR. We take the applied
flux Φex to be the sum of a sinusoidal target input sig-
nal, colored input noise, and a dc bias flux Φbias. The
input signal power S and input noise power N (mea-
sured within a fixed frequency interval around the tar-
get signal frequency) are taken arbitrarily small, but
with an input SNR Rin ≡ S/N, 10 log10 Rin = 32 dB
(representative of values measured experimentally).
Because the input signal and noise are weak, they are
transformed by the device in a nearly linear manner,
simply being multiplied by the slope (or “gain” G) of
the TC at the bias value Φex = Φbias. (We have studied
the high input amplitude, strongly nonlinear response
regime in the single junction (rf) SQUID [4].) In
keeping with the experimental conditions [5], we as-
sume a smooth, band-limited input noise power spec-
trum, and the input signal and noise are limited to
frequencies far smaller than the SQUID bandwidth
(τ−1). In the experiments, the sensing SQUID’s “out-
put” was measured by coupling its shielding flux to
a conventionally operated SQUID magnetometer via
a superconducting inductive current divider network
with a power coupling efficiency ε = 0.45. In the ex-
periments [5], the input noise power N comes not
from an external noise generator but from the internal
noise of the sensing SQUID itself. To be consistent,
we introduce a “noise floor” power Nf = N to account
for the internal noise in the measuring SQUID. This
yields an output SNR of

R =
SG2ε

NG2ε+Nf
=
RinG

2ε

G2ε+ 1
. (11)

When the output SNR R is maximal, the gain G �
1, and (11) implies that Rin ≈ R, giving us a good
estimate of the input SNR from the maximal output
SNR. The minimum output SNR in the theory can
reach zero (−∞ dB) at the zero-slope points of the
transfer characteristic. However, in the experiment the
SNR will not go down to zero because of two factors:
(i) the sine wave input signal does not in reality have

Fig. 3. Contour plot showing theoretically predicted output SNR
(taken at target signal frequency), in the running solutions regime,
versus bias parameters Φbias and J. SNR scale (black-to-white)
corresponds to −28 dB to 32 dB, with contour lines spaced 5 dB
apart (SNR values of −28 dB or less are represented by black; a
“speckled” appearance in the black regions of the β = 0.4 plot is
due to limited numerical precision).

infinitesimally small amplitude, and therefore samples
the slope of the transfer characteristic at more that one
point, and (ii) noise causes a slight fuzzing out of the
transfer characteristic, so it is impossible to sit exactly
on the zero slope point for an infinitely long time.

In Fig. 3 we show the output SNR versus the control
parameters J and Φbias. The Φbias values shown cover
two periods of the TC, and the SNR contour plots re-
flect this periodicity. The J values shown cover the
range over which the dc SQUID has both static and
running states (depending on the value of Φbias). This
range is characterized by a split in the maximal SNR;
one observes “bifurcating crests” separated, vertically,
by Φex2−Φex1. The SNR depends on the slope of the
TC: the SNR is maximal on the segments with maxi-
mum slope. The troughs running just outside the crests
correspond to zero-slope points at minima and max-
ima of the TC. With increasing β the range of J val-
ues yielding both static and running solutions shrinks.
Also, for large β’s the crests become less evident, but
the troughs remain. For J > 1, the Josephson junctions
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Fig. 4. Gray-scale plots of theoretically predicted and experimen-
tally measured output SNR (taken at target signal frequency)
versus bias parameters Φbias and J. SNR scale (black-to-white)
corresponds to 0 dB to 32 dB (SNR values of 0 dB or less are
represented by black). β = 1.33.

are normal and the transfer characteristic has a much
reduced range, resulting in a minimal output SNR.

As for the hysteretic regime, our earlier work on
double-well potentials [3] predicts that the output at
the fundamental of the applied frequency will show
a maximum as a function of asymmetry (tilting of
the double-well potential). Deviations from symmetry
lead to a decrease of the spectral amplitude at the fun-
damental. This is borne out in experiments [5] which
show a maximal SNR at the fundamental in a nar-
row band centered about Φbias = 1

2n (n odd), where
the dc SQUID potential is symmetric. This persists
up to the value of the bias current J for which hys-
teresis disappears (the lower limits for the horizontal
axes in Fig. 3). At this point, the running solutions
regime studied in the present work commences, and
one obtains the “bifurcating” SNR crests and troughs.
In contrast to previous work [4], we have predicted
the behavior of the dc SQUID by relying directly on
the dc SQUID equations.

In Fig. 4 we compare theoretical SNR predictions
with experimental measurements reproduced from
Ref. [5]. It is gratifying that the simple model (4)
of the SQUID, together with (11), reproduces much
of the complex behavior observed in the experiments.
In particular, the onset of running states (the left end

of the V-shaped bifurcating crests) is consistent with
theoretical predictions (cf. Fig. 1), and the shape of
the bifurcating crests in the theoretical plots matches
the experimental observations very well. We believe
that the slight discrepancies in the positions of fea-
tures relative to the J axis are due to uncertainties in
the experimentally obtained value of the critical cur-
rent I0, which is used to compute the J values. Other
quantitative differences between the theory and exper-
iments may be due to the fact that the experimental
SQUID is inductively coupled to a measurement or
readout SQUID that is operated in the conventional
“flux-locked” mode (see below), and coupling effects
(if important) should be introduced into the dynam-
ical equations (4). This is currently under investi-
gation. We have also ignored the effects of junction
capacitance, which is generally of minor significance.

SQUIDs are conventionally operated in a “flux-
locked” mode [7] wherein the device is used as a null
detector via a controlling feedback loop that “locks”
the SQUID to an operating point on its input1output
TC (usually consisting of a plot of output voltage ver-
sus input magnetic flux). Noise can cause the device
to lose the null point (the slew rate problem), and
establishing another stable operating point is neces-
sary before measurements can be resumed. It has been
shown, in this work as well as in experiments [5],
that allowing the SQUID to operate as a free-running
nonlinear dynamic device enables one to optimize its
performance (for a given input SNR) by “tuning” the
TC via an adjustment of externally controlled bias pa-
rameters. This is important because the nonlinearity
parameter β cannot easily be changed after fabrica-
tion. The optimization is independent of the input SNR
and does not require control of the noise.

It is important to stress that devices other than
SQUIDs which nevertheless have a response charac-
terized by TCs similar to those displayed in Fig. 2
should also show these effects. We also note that an
input SNR that exceeds a threshold value can lead
to an output SNR in excess of the input SNR; this
situation, discussed by us in earlier work [4], is not
addressed here. It is hoped that further investigations
along the lines of this work, together with sophis-
ticated arraying techniques, will lead to practical
SQUIDs that are substantially more noise-tolerant
than their existing counterparts.
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