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dc signal detection via dynamical asymmetry in a nonlinear device
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We study the detection of very small changes in a “target” dc signal, using a nonlinear dynamic sensor that
is ac biased with &nownsinusoidal signal. The sensor’s nonlinear response generates harmonics at the odd
multiples of the ac bias frequeney in the absence of the dc signal, andalitmultiples of w in the presence
of the dc signal, with the spectral amplitudes of these harmonics being very sensitive to the dc signal ampli-
tude. For weak ac bias amplitude we use perturbation theory to calculate signal and noise powers at dc, at the
fundamental(at frequencyw), and at the first harmonit frequency ), from which we can predict the
signal detection statistics. We compare these results with numerical simulations for both weak and strong ac
bias amplitudes, as well as with results for an optimal detector. As our example nonlinear dynamic sensor, we
use an rf superconducting quantum interference device [@#063-651X98)13806-(

PACS numbes): 05.40:+j, 02.50.Ey, 85.25.Dq

I. INTRODUCTION nal) time scalesthe hopping rate depends critically on the
asymmetry as well as the spectral characteristics of the
Periodically modulated stochastic systems have receivedoise in the same manner as the “standard” stochastic reso-
considerable attention recenfly]; these systems, which can nance[1,4]. Calculations carried out on a specific nonlinear
generally be described by the “particle-in-potential” para- dynamic system, the rf superconducting quantum interfer-
digm, dx/dt = — JU(x)/dx + S(t) + N(t), exhibit a richness ence device(SQUID) loop subject to Gaussiaoorrelated
of noise-mediated resonance behavior in the spectral megoise, demonstrated a remarkable agreement with numerical
sures(e.g., the output signal-to-noise ratio, SN& the re-  simulations within the framework of the perturbation-theory-
sponse. HereS(t) and N(t) denote a deterministic signal based approximations inherent in the theory.
(usually taken to be time periodiand noise(usually taken To determine whether the SR effect has signal processing
to be Gaussian If the potential energy functiotd(x) is  applications, however, we cannot rely on SNR alone. For
even(often bistablg then the output power spectral density example, a nonlinear signal processor may output a signal
(PSD consists of a Lorentzian-like noise background withthat has infinite SNR but is useless because it has no corre-
peaks appearing at theeld multiples of the signal frequency lation with the input signal. For signal estimation, relevant
o. However, real-world manifestations of these systems argneasures are mean square error or Bayesian [{gst&or
often asymmetric, with the dynamics containing even andsignal detection, one must consider detection statistics: prob-
odd functions of the state variable. The simplest route taability of detection and probability of false alarm. Probability
asymmetry in the above dynamics is to incorporate a smabf detection is the probability that the system will report that
dc termx, into the signalS(t) or, equivalently, a ternxx,  a signal is present when in fact a sigmapresent. Probabil-
into U(x). The output PSD of asymmetric systems containsty of false alarm is the probability that the system will report
all the harmonics of the periodic signal frequency; hence, thehat a signal is present when in fact a signahé present.
appearance and magnitudes of the even multiples obuld  Such statistics are summarized in a plot of detection prob-
be taken as quantifying measures of the asymmetryability versus false alarm probability known as the receiver
producing signal. operating characteristiROC). In recent publication$6,7],
Asymmetric dynamic systems of the above form havewe computed the ROCs for a single bistable element and a
been studied2] with Gaussian white noise. The spectral globally coupled array of such elements. The detection prob-
amplitudes of the harmonics of the periodic signal, in theability (for a fixed false-alarm rajavas found to follow the
output PSD, pass through maxima as a function of noisé&ehavior of the output SNR: it displayed a maximum as a
variance. In recent worf3], we presented a systematic deri- function of noise, and the coupling significantly enhanced
vation of the resonant behavior of the spectral amplitudes ofignal detection performance over that obtained for a single
the harmonics akw (k=1,2,3,...) in ageneric nonlinear element.
dynamical system subject to a weak symmetry-breaking dc While SR does lead to an enhancement in the signal de-
signal in addition to a known cyclic signal. The resonanttection performance of aa priori nonlinear sensor, it gen-
behavior was found to depend on a new control parametegrally cannot provide an output SNR in excess of the input
the degree of asymmetry, and was interpreted at all ofders SNR, when the input signal is a known, subthreshold signal
via a matching of deterministi¢the frequencykw) and sto- in Gaussian noise. For this case, a nonlinear device will
chastic(the interstate hopping rate in the absence of the signever outperform the(idea) matched filter; however, in
practice, such an idedlinearn filter is often difficult to
implement. One such example is afforded by the SQUID,
*Electronic address: inchiosa@nosc.mil which, despite being the most sensitive detector of magnetic
"Electronic address: bulsara@nosc.mil fields, is severely limited by sensor-environmental noise in

1063-651X/98/581)/11513)/$15.00 PRE 58 115 © 1998 The American Physical Society



116 M. E. INCHIOSA AND A. R. BULSARA PRE 58

practical applications wherein it is operated in a feedback oto remove hysteresis in the voltage-current characteristic of

“flux-locked” configuration[8]. SR has already been shown the junction[8]; this process effectively renders the link ca-

to occur in a single-junctiofrf) SQUID [9]; hence, it offers  pacitanceC extremely small so that the inertial term in Eq.

the possibility of a constructive utilization of that portion of (1) may be neglected. Transforming to the normalized state

the noise that cannot be canceled by existing techniquesariablex(t)=®(t)/®,, we may write the dynamicél) in

Recent theoretical studi¢8] and experiment§10] indicate  the “particle-in-a-potential” form:

that the technique outlined above may be applicable to many

nonlinear sensors that must detect weak dc signals in the . IU(X)

presence of significant amounts of low frequency noise. By TLX=— I

applying aknown bias signal with carefully selected fre-

guencyw, the detection may be shifted to a more acceptable ] ] o )

part of the frequency spectrum. It is important to note thaﬁ/vher_e the dot denotes time differentiation, and the potential

the technique should work best when the sigritiie target ~ function

and cyclic biag are uncorrelated with the noise background;

in practical signal detection scenarios, this is frequently the 1 Bs

case. Then, in a detector that hasaapriori symmetric po- Ux)= E(x—xo)z— ——C0s 2rX (©))

tential, the appearance of the even multipleseofin the 4m

output PSD, together with the change in their spectral ampli-

tudes in the presence of the symmetry-breaking signalk multistable wherBs> 8., whereB,.=1 for xo=0. This

(which may be dc or monochromatic ac, in which case onanultistability translates into a hysteretic, or multivaluel,

looks at the properties of combination tones in the outpuversus ®. transfer characteristic. We have expressed the

PSD, may be used to detect or estimate the weak targefnormalized external flux®./®, as the sum of three terms:

signal. In remote sensing applications, one often knaws a symmetry-breaking dc tersy [which we incorporate into

priori the spectral characteristics of the background noise ag(x)], an ac termz(t) = A sin(wt+ 6) with 6 being a(often

well as the sensor noig@ the absence of the signahence, assumed randonphase factor, and a noise tewft). Typi-

one is afforded the possibility of optimizing the sensor pa-cally the time constant, ~10 2 s, so that with the excep-

rameters (specifically, the potential energy functjorio  tion of the (interna) thermal noise, which is assumed negli-

achieve the best possible detection. gible for the purposes of this paper, any externally applied
In this paper, we present a systematic computation of th@oise will usually have a bandwidth far smaller than the

signal detection statistics for the single-junctiof) SQUID  SQUID bandwidthr_ 1. This is even more the case in ex-

(which we take to be our example nonlinear dynamic deviceperimental setups wherein a resistive shunt must often be

subject to a weak dc target signal in the presence of ambiemtiaced across the SQUID to filter out high-frequency noise.

noise and a known cyclithaving frequencyw) bias signal.  The LR circuit formed by the shunt resistance and the loop

We consider the response at the frequenciesay only,  inductance results in a low-pass filter that decreases the input

building on the results of our earlier publicatiof8; how-  noise bandwidth even furth¢®]. Hence we must takg(t)

ever, in addition to the output signal power we must nowto be zero-mean Gaussiaxponentially correlatedhoise; it

compute the noise power as well. This calculation is carriednay be modeled via a white-noise-driven Ornstein-

out in Sec. lll. We begin by briefly describing the rf SQUID Uhlenbeck(O-U) procesq11]:

loop and summarizing our earlier resul.

+7(0)+y(1) @

N -1
=—7.yt+toF(1), A4
IIl. THE rf SQUID LOOP y ¢y (t) 4

The standard rf SQUID loop is a superconducting loopwhereF(t) is zero-mean “white” noise with autocorrelation
into which a single Josephson junction has been ins¢8ked (F(t)F(t+s)),=(s) and 7. is the correlation time of the
The dynamics are multistable with the magnetic flux throught‘colored” noise y(t). Then, one easily verifigd 1] thaty(t)
the superconducting loop being quantized in units of the fluhas zero mean and autocorrelation functigit)y(t+s));
guantum®,=h/2e. In the presence of the junction, the mag- :<y2>e_|5‘”c, whence the “white” limit, corresponding to
netic flux ® through the loop, in response to an applieddelta-correlated noise, is realized when—0. The colored
time-dependent magnetic fluk,, evolves according to the noise has variance§E<y2>=crzTC/2 [we reiterate thay(t)

dynamics[8], has units of normalized magnetic flux
) It is convenient to prebias the SQUID loop so that the
d d D(t) Bs . 2aD(t) D(1) potential (3), for the multistable casg,> 8., is centrally
LC@+ TLaJ“l) D, + 5om D, - D, bistable with possible outlying metastable states. This is ac-

(1) complished 9] by incorporating a dc bias/2 (m odd) in the
potential: we replace, by X+ m/2. Assuming the signal

whereL andC are the loop inductance and capacitange, and noise to be very slow compared to the well-relaxation
=L/R, is the SQUID time constantR; being the normal time (the standard adiabatic assumpliowe may incorpo-
state resistance of the junctionand the parameteg, rate the signalp(t) and the noisey(t) into the potential
=27Li./®, (i, is the junction critical curremtcontrols the  function U(x) as well, writing Eq.(2) in the form 7 x
hysteretic behavior of the device. In most practical applica= — dU(x)/dx where the potential functiod . is now given
tions, the SQUID loop is shunted by a low resistance in ordeby
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1 m 2 B Il. OUTPUT POWER SPECTRUM; SIGNAL POWER
S
UeX(1)= 5 Xx—Xo= 5 =y(t) = n(t) | - 220 2mX. AND NOISE POWER
T
(5) In [3] we calculated, for an asymmetric potential, the re-

sponse power at the fundamentéabnd first harmonic @ of
the cyclic drive frequency. In this paper we first derive the
, , ) ) noise power spectrum by adapting the approachilét to
In this work, we consider the signal detection perfor- 501y to an asymmetric potential. To accomplish this, we
mance of the SQUID in its multistable, or dissipative, modeextend[13] to second order in perturbation theory. For the
(Bs>Bsd. In this case, one treats the SQUID as a nearsjgnal power at» and 2w, we recover the results §8]. Note
discrete hysteretic two-state system, with a transition ratgnhat terms for the signal power at twice the driving frequency
between states; the rate can be readily calculated for the cafigst appear in second order perturbation theory. However,
of “strongly” (compared to the SQUID time constagbl-  for the noise power, first order perturbation theory is suffi-
ored noise that is germane to the devieg>r_ . This pro-  cient (for sufficiently weak driving. We can use the second
cedure will be summarized in the following section, whereorder terms to test whether we have exceeded the limits of
we extend the calculations §8] to compute the noise com- the first order result.
ponent in the output PSD of the device. We note that in We model the SQUID as a two-state system with state
recent work[12], we have considered the resporfgeanti-  probabilitiesp; ,(t) that evolve via the master equatici$g
fied by the output SNR at the fundamental of the known
cyclic bias signal of the rf SQUID operated in its honhys- D= WorDo— W
teretic, or dispersive modeB{(<p.J), and subjected to a P1=WaiP2 ™ Waab1, ®)
target dc signal. For this monostable potential case, the two-
state approximation and the transition rate approach no bzzwlzpl_wﬂpz,
longer apply. Instead, the output power spectral density
(PSD may be computed directly from an input-output trans-where p, + p,=1 andW,, denotes the transition rate from

fer characteristic. Again, we obtain very good agreementtatej to statek. The master equatior(§) have the solution
with experiment. [13]

It is important to note that the “adiabatic assumption”
whereby we assume the SQUID to be a “static nonlinearity” t
subject to a signal of frequency far smaller than the SQUID pl(t):g_l(t)[pl(to)g(t0)+J WZl(t,)g(t,)dt,}.
bandwidth 7 ! is critical to our ability to carry out the fo
current as well as earli¢B,12] calculations. The assumption . (7)
holds as long a§(=w/2mw)<7_*,7. . In addition, we have g(t)=exp[ f [le(t’)+W21(t’)]dt’].
made the above-mentioned assumption of strongly correlated
external noise having correlation time> 7_; the sensor’s
thermal noiséwhich is, in fact, broadbanid]) is assumed to _ ) L .
be far smaller than the ambient or “source” noise, and will theoretic e_xpan5|on of the transition rates to second order in
be neglected throughout. To summarize, we reqiee; - @n expansion parameter (=A/ V2op) <1

<7 1. We also assume that the signal and noise amplitudes

We can integrate Eq.7) if we carry out a perturbation-

are sufficiently low(the assumption of “no deterministic Wi~ ag+ayn’ (1) +azn' (1),

switching” a cornerstone of the current and previgabcal- (8)
culationg so that the SQUID may, in fact, be regarded as a , '

centrally bistable system, in which the noise drives the dy- Wor=~ Bot Bin' (1) + Ban' (1),

namics between the two centr@table minima of the po-

tenti_al, with excursions to th_e outlying metastable states oGy nere 7' (t)=A’sin(wt+6). The expansion coefficients are
curring  very seldom. Finally we note that our gptained through a straightforward Taylor expansion of the
characterization of the SQUID as a device that usually reyansition rates, and they may be found 8.

sides in its steady statéhis is predicated by the small time  ging the transition rate expansi¢8), we can integrate
constantr; ) implies that we may reduce the problem of the(7) to obtain the probability that the particle is in the “1”
SQUID response to that of tracking the dynamics of thegiate at timet given that it was in thes, state at timet,

noise as it passes through the SQUID loop in the presence ‘theresoe{l,z}). Collecting terms in powers of the expan-
the asymmetrizing dc flux and a slowly varyirfgnown  gion parameteA’, we obtain

cyclic signal that modulates or “rocks” the potential. Tran-
sition ratesW,,,W,; (these were computed [B] and will be
discussed again belowharacterize the “hopping” between P1(t[So.to) =p1o+A'P1tA’?pit O(A™), 9
the allowed SQUID states of the noise variable, and one

requires the adiabatic conditidrgW,,,W,; for our charac- where the coefficients are

terization of the SQUID as a static nonlinearity with dichoto-

mous Markovian dynamics to be valid. This condition sets a _ 25 1 —
lower limit on the values of noise varianeg that satisfy our _ATY L ettty (26p—Data
theoretical assumptions. P10=75, 2a ’

(10
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P11=C;a;c05 wt) + C;b;Sin(wt) + e~ * () b,sin wt) + c3a;c0 wtg) + C3bzsin( wtg)], (11
and
P1o=C1+C4a,008 2wt) + C4b,sin(2wt) + e~ ¥ 10{C,+ Cy(t—tg) + CsSin( wt)[ a0 wtg) + bssin( wty) ]+ csascog 2wt)
+ Cghgsin(2wt) + c7a,c09 2 wtg) + c7b7SiN(2wtp)}. (12

The a’s, b’s, ¢'s, and C's depend only on the Kronecket function O, the ac bias frequency, and the expansion
coefficients in Eq.8); we list their definitions in the Appendix. For convenience, we have also switched to the sum and
difference variablesr=ay+ Bg, B=a1+ B1, Y=+ By, a= a9— Bo, EE a1— B, and;E ar— Bs.

In our two-state approximation, the probability density function of the SQUID output is

P(X,t)~p1(t) 6(X—X10) + P2(t) 8(X—Xz0), (13

wherex;o andx,q are the locations of the minima of the unperturbed potential en@gyTherefore, we can compute the
autocorrelationx(t)x(t+ 7)|sg,to) from p(t|sy,tg) using

(X(1)x(t+ 7)[sg,to) =[X10P1(t) + X20P2(t) I[X10P1(t + | 7]) +Xo0P2(t+ | 7)) ]. (14

Following [13], we average the autocorrelation over one cycle of the periodic ac bias flux and then perform a Fourier
transform to obtain the output power spectrum. To second order in perturbation theory, the power spectrum consists of
delta-function peaks d&2=0, w, and 2w, superimposed on a smooth noise background:

M2 2
S(Q)=M25(Q)+ 715(Q—w)+725(9—2w)+N(Q). (15)

M, andM, were calculated if3], and

laa(a?+w?) +(A22)[ —ap(aB—apB)+(ay—ay)(a*+o?)]|

M= \2mc+ \2mc , (16)
az(a2+ w2)
wherec= (X9~ Xp0)/2 andc= (Xo+ X20)/2.
The noise term in Eq15) can further be written as the expansion
N(Q)=Ng(Q)+Ny(Q)A"2+0O(A’%), (17
where
()= 2= (19
T a(a?+0?)
and
()= | _(aBmaB?  —afl(a’~ a)y+2a(ay-ay)]+[alya ya)t alay- ay)]0?
2 a(a2+QZ)l a?+ w? a(a?+0Q?)
, Bla*(aB—ap)+5a’a(af=ap) ~4a(af—aB)Q’+ f(a®~a®)(Q*+ w?)] 9
[&?4+(Q—0)?][a?+ (Q+w)?] '
|
We have computed the term i'4 as well, but we omit it IV. SIGNAL DETECTION

due to its length and the fact that within the regime of valid-

ity of the perturbation theory expansion it adds a negligible We will concentrate on detecting a small chanie, in

contribution. the flux, since large flux changes can be detected without
The features of5, N, and S+ N will be discussed in the using SQUIDs, or by using SQUIDs in conventional operat-

following section, where we concentrate on the thrust of thisng moded8]. If the noise level is too high to permit useful

paper: the signal detection problem. signal detection, it may be reduced by choosing a sufficiently
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narrow frequency bin width, although this requires observingcase of simulations, we estimate the noise power by averag-
the signal for a longer time before making a detection deciing the power in the frequency bins 4A8 above and below
sion. (unless(2=0) the test statistic’s frequency biwhich is cen-

To maximize dc signal detection performance, one wouldered at frequencyl).
like to bias the SQUID onto an operating region where the This model represents an improvement over the model we
response depends sensitively on the dc signal and where thised in[7]. In the present case we use the signal power and
response noise is small. noise power, rather than just their ratio. This allows us to

One can get a general feel for where the signal detectioaccount for additional nonlinear effects and more compli-
performance will be optimal by looking at plots of signal cated detection scenarios. In the previous mddElthe out-
power and noise power versMg. However, to make quan- put noise power was taken to be the same under both hypoth-
titative predictions of the signal detection performance weesesH, andH, and the output signal power was taken to be
can use a modified version of the approach we us¢d@Jito  nonzero only under hypothedis;. The present model takes
calculate the probability of detectioRy and probability of into account the fact that the nonlinear response yields a
false alarmP; . different output noise power under the two hypothelligs

We perform signal detection by measuring the outputandH,. The present model also allows for nonzero output
power | in a frequency bin of widthAw centered at fre- signal power under hypotheskl and Hj.
quency(). We then compare our “test statistid"to a “de- For comparison we will also calculate the optimal detec-
cision threshold”®. If the power exceeds the threshold, we tion of a dc signalAx, in exponentially correlated Gaussian
report that the target signal is present; otherwise, we reporioisey(t) as defined via Eq4). We observe the received
that it is absent(Under certain conditions to be discussedsignal r(t) over an observation intervg0,T]. In general,
later, we see arop in power when the target signal is increasing the observation timE improves the detection
present. In such cases, we simply reverse the conditions fgrerformance, but it also increases the amount of time that
reporting the presence and absence of the target signal. must elapse before a detection decision is made.

To predict the probability of detection and probability of ~We can map our problem onto a more general binary
false alarm, we need to know the probability distribution hypothesis-testing problem worked ouf{i¥]: in hypothesis
P(1) of our test statisti¢. CalculatingP(l) is difficult due to  H,, a signals,(t) was present during the observation inter-
the nonlinear nature of our system. We can, however, apval, and in hypothesisl,, a signalsy(t) was present.
proximateP(l) by the probability distribution of the power

at the output of a bandpass filter of passband bandwdih Hyt r(t)=s(t)+n(t),
centered at frequendf, which is fed by a sinusoidal wave (23
of amplitude/2E, in white Gaussian noise having powsft Ho: r(t)=sp(t)+n(t),

over a bandwidthiA w. (Such a bandpass filter is indeed the

optimal detector of a sinusoidal wave of unknown randomWhere O<t<T andn(t) is zero mean Gaussian noise, which
uniformly distributed phase in white Gaussian noj¢é].)  May be nonstationary. In our case,

The probability that the power at the output of the filter will

exceed a threshol® is Q(v2E, /N,\20/A) [15], where S1()=AXo,  So(1)=0. (24)

Marcum’s Q function is The optimal detection statistic is

* 722+ a?
Q(a,,B)EfBzex;{— 5 )Io(az)dz (20) G=Re Th’l‘(t)
0

1
r(t)—zsl(t)}dt

andlg is the modified Bessel function of the first kind and T
order zero. Using this approximate model of our test statis- - Ref hg (t)
tic’s probability distribution, we obtain the following prob- 0
abilities of detection and false alarm:

r(t)— %so(t)}dt. (25)

The filter functions{h;(t)} are solutions of

Pa=Q(\2E,1/N3,V20IN), (21

.
R(t,t")hi(t")dt’ =si(t), 26
P+=Q(V2Eo/No, V20/Np), (22) fo (t,t)hi(t")dt' =s;(t) (26)

where the subscripts 1 and 0 refer to the hypothéseand  whereR(t,t’) is the covariance of the noisgt). If n(t) is

H, of having the dc target signalx, present and absent, stationary, then we can replaqt,t’) by R(t—t"). If the
respectively E, is the mean response signal power in a fre-stationary noise has a power spectrum that is a rational frac-
quency bin of widthAw centered at the detector's center tion, then a method exists to find thk;(t)} that solve Eq.
frequency =0, w, or 2w, and equals total signal power (26).

minus noise power(Note, however, that for practical signal ~ We need the probability density of the test stati€ido
detection the noise power is typically much less than theeompute the detector performance. Si&és obtained from
signal power, making the difference between signal poweer linear operation on a Gaussian signal, it too is Gaussian,
and total power negligiblg.We can calculate the response and its probability density is fully described by its mean and
noise power\ in the test statistic’s frequency bin from the variance. The expectation valué€s(G) and £(G) under
noise terms in the analytical expression for the PSD. In thdwypothesed1, andH, respectively, are
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o6

2

G)=—&(G
E1(G)=—&(G) P?pt—}

1
=—erfc| —
2 C(ﬂaé

Using these formulas we can easily study the dependence
of the detection statisticB3™ and P{™ on the noise param-
eterScr)Z, and 7., the target signal strengthx,, and the ob-

0'(2322|€1(G)|_ (28 servation timeT. For example, suppose we want to deter-
mine the dependence &#$™ on one of these parameters,

Setting the noise covariance in E@6) equal to the co-  keepingP{™ fixed. Inverting Eq.(35), solving for the deci-
variance functionR,(7) of our stationary Gaussian noise sion thresholdG,;, and inserting the result into Eq34)

y(t), the filter functions{h;(t)} are given by{14] yields

G+ (35

1(T
:zfo [hi(t) —ho(H)]*[s1(t) —se(t)]dt,  (27)

and the variance ob is

1
hi(t)= %{—si”(t)+3i(t)/r§+[—si’(0)+si(0)/~rc] S(t) PaP'=serfderfc™{(2P{™) — Jog/2], (36)
Ty

where erfc?! is the inverse function of erfc. Now, using our
equation(33) for cré, we can plot the dependenceR§™ on

2
Substituting Egs(24) and (29) into Eq. (25 and using “y: Tc» A%, OF T.

Egs.(27) and(28) gives the optimal detector for our particu- !N many cases the SQUID signal detection performance
lar signals and noise, will show a parameter dependence closely mirroring the op-

timal detector. For example, we would expect both detectors
1 (T 1 to have a similar observation time dependence provitied
—f r(t)dt+r(0)+r(T) —Ea'é, (30 >27lw.

TcJO

+[s/ () +s(T)/7c]8(t=T)}, Ost<T. (29

AX
o=
20'y

V. NUMERICAL RESULTS OF THEORY

and its variance AND SIMULATIONS

> XS We will consider three cases of ac bias signal amplitude,
‘TG_ZT‘z(szT/Tc)' 8D A=0, A=0.1, andA=0.56. In the first two cases we can
y estimate the response power spectrum analytically. In the

third case the ac bias signal is just below the “deterministic
switching threshold,” i.e., the level of bias that would modu-
Axe T 1 late the potential wells so much that during each cycle of
G~ 0 f r(t)dt__gé, (32 modulation the left well and right well would alternately
20,10 2 disappear. In this case we rely on simulations since our per-
turbation theory assumptions do not hold.
and We first consider the casA=0.1. Figure 1 shows the
output power at frequencieQ =0, w, and Zvw. Note that
AX%T “ S+N" simply refers to the total power in the output power
(33 spectrum over a frequency range of widilw centered at
frequency(), and “N” refers to the contribution to the total

From Eq.(32) we see that we can optimally detect the dcPOWer in this frequency range due to noise terms only. We
signal by simply integrating the received signal over the obhave pIotte_d the res'uIFs of blnary-_flltereq simulations begde
servation interval and comparing this integrated value to &n€ theoretical predictions. The binary filter outputs a fixed
decision threshold; . positive or negative value depending on whether the

We can obtain the optimal detector’s probability of detec-SQUID'’S state point lies in the right or left potential well,
tion for a given threshold, by integrating the(Gaussian respectively. Since the theory uses a two-state approxima-

probability density function ofs from G, to infinity under 1N, We expect it to give better agreement with the binary-
the H, hypothesis(recall that the expectation value & filtered result. In fact, the theory shows excellent agreement

depends on the hypothesiggiving us a result in terms With the simulations for this value Gk
of the complementary error function, erjEl Figure 2 shows the output powers #r=0. (Note that for

SinceT> 1., we can make the approximations

O-G"V

20')2, Te

) A=0 the total power equals the noise power excepflat
- (2/‘/;) Joe " dt, =0, where there is a difference due to the nonzero dc value.
2 In the A=0 case, we check for the effects of the nonpertur-
poPl— Eerfc 1 G~ 9c (34) bative approximations made in the theory. These include the
2 \/Za'é 2 two-state approximation and the adiabatic approximations

o~ 1> 7> 7 [15]. We can see from the figure that the non-
We can likewise obtain the probability of false alarm by perturbative approximations cause very little error in predict-
performing the same integration under tHg hypothesis, ing the binary-filtered output powers.
giving Figure 3 shows the unfiltered output powers and the de-
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S+N, bin. sim. S+N, theor. N, bin. sim. N, theor.
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FIG. 1. Output powe(in dB) at frequencie€)=0 (top row), » (middle row), and 2 (bottom row, computed as a function of dc bias
Xo in normalized unitgsee textand noise variance;‘; (in dB). Columns 1 and 2: total power computed via binary-filtered simulations and
theory, respectively; column 3 and 4: noise power computed analogously. Numbers inside each frame denote the maximum and minimum
powers(in dB). Parameter value®s=0.1, 7.=0.01,T=161 s,0=10, Aw= w/256, B;=5.

tection probabilityP, for a fixed false alarm probability of output signal power and noise power. Then these values
P;=0.1. ForQ) = w,2w, the maximumPy occurs close to the were used in Eqs21) and(22) to obtain predictions of the
noise variance that maximizes the output power. Howevergetection probability?, for a fixed false alarm probability of
the maximizing value of dc flux, differs between the out- P;=0.1. We could have dispensed with the simulation and
put power and?4 plots, since the rate of change of the outputused our theoretical expressions for the output signal power
power with respect to the dc signal is zero at the maximurand noise power; however, the mixed approach allows us to
itself, and it is the variation of the output power with that  isolate errors arising from the approximations used in the
makes detection possible. Note that far=w the output output power theory and the signal detection theory.
power monotonically decreases as we incregsffom 0 to In Fig. 3 we showed the detection probabilRy only for
0.5. Therefore, throughout this range>gfs we can always a fixed false alarm probabilityP;=0.1. Figure 4 shows
do detection by looking for a drop in output power with curves of detection probabilitf?y versusfalse alarm prob-
increasingx,. However, forQ)=2w, the rate of change of ability P, known as “receiver operating characteristics”
the output power withx, can be positive or negative. There- (ROCS. Different points along the ROCs correspond to dif-
fore, in thePy plots for Q=2w we plot the maximum de- ferent values of the decision threshdd We show the re-
tection probability using either a “positive slope” or a sults using a detector measuring total SQUID output power
“negative slope” detector. at frequencyQ)=2w, for the parameter valueg,=0.2, o§
Each contour plot results from simulating the system at= —13.33 dB, which correspond to the maximum detection
208 different é(o,af,) points. At each of the points we ob- performance at @. We find good agreement among the re-
tained theP4 “sim.” results by running 2048 numerical sults obtained by simulatiosolid curve, the mixture of
simulations each of the SQUID detector response with andimulation and theory discussed abd@ashed curve and
without the dc target signahx, present. Each simulation the purely theoretical predictiofotted curve
involves generating long input and output time series Now we return to the case of zero ac bias amplitude (
(262 144 samplgsand computing fast Fourier transforms. =0). Even in the absence of an ac bias flux we can still
Due to the high computing demands, we ran our simulationgletect the dc signahx, by its effect on the system’s re-
in parallel using 128 processing elements of a Cray T3Esponse to the input noise. We show the unfiltered output
supercomputer. power and detection probability for this case in Fig. 5. Note
The contour plots labeleB, “mixed” show predictions that the maximum detection probabilities obtained for
of P4 generated by employing a mixture of simulation and= w,2w are lower than for the cas®=0.1.
theory. First the system was simulated to obtain values of In Fig. 6 we plot the output powers and detection prob-



122 M. E. INCHIOSA AND A. R. BULSARA PRE 58

S+N, bin. sim. S+N, theor. N, bin. sim. N, theor.
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FIG. 2. Same as Fig. 1, witA=0.

ability for the highly nonlinear casé = 0.56, as obtained by =w (starg, the SQUID detection probability comes within
numerical simulation. Compared to the case 0.1, the is- 4% of the optimal detector for certain values of the noise
land of high output power in the first harmonic responsevariance. AtQ)=2w (boxes, however, the SQUID perfor-
(2=2w) has become stretched to include lower input noisemance suffers. Because the ac bias flux amplitude is well
values. The maximum detection probability no longer occurdelow the deterministic switching threshold, the SQUID’s
at the input noise variance that maximizes the output poweresponse is only weakly nonlinear, and not much power is
Also, the value of dc flux, maximizing signal detection at generated at twice the ac bias frequency. Therefore, we see
QO =2w occurs forx, close to zero, in contrast to thé  low signal detection performance using measurement at this
=0.1 case. frequency.

Consider now the effect of changing, the colored noise To improve the 2 signal detection performance, we in-
correlation time. Comparing Figs. 3 and 7, we see that thereased the ac bias flux amplitudeAe= 0.56, which is just
output power maxima af) = w,2w shift to slightly smaller below the deterministic switching threshold. This improved
values of input noise variance as we decreaseom 0.01to  performance so much that we were also able to reduce the
0.0005 (towards the limiting case of “white” noige Note  observation time fronT=161 to T=20.1 sec and still get
that the detection probabilities increase significantly. This issignificant detectior(Fig. 9). Comparing Figs. 8 and 9, we
consistent with previous worKL6] on the effects of colored see that decreasing the observation time decreased the opti-
noise on the output PSD and the SNR(a w; “whiten- mal detector’s performance. Note, however, ihereasein
ing” the noise(i.e., decreasing the correlation timg) leads  detection performance using the SQUID’s outpuflat 2w
to enhancement of the output SNR. Exceptions to this behavboxes. Even though the detection task has been made much
ior do occur[17]; however, we do not discuss them here. more difficult by shortening the observation time, using a

As we have noted earlier, optimal detection of the dchigher ac bias flux amplitude has more than compensated. In
signal Ax, uses an ideal linear sensor to average the inpufact, the performance & =2 now exceedshat at() = w
signal over an observation interval and compares that avefstars. Although the detection performance(at=0 exceeds
age to a threshold. Figure 8 compares the optimal detectortat at() = w,2w, in practice it may be advantageous to de-
performance(solid curve, calculated using Eq(36), with  tect at the higher frequencies due to the presence in the mea-
the SQUID signal detection performance as measured viaurement system of additional noise sources having large
numerical simulation. We have plotted the detection prob-amounts of low frequency energy, e.g.f hbise[18].
ability P4 for a fixed false alarm probability oP;=0.1, When applying our theory, we have stayed within the
maximized over the dc bias,. The SQUID’s ac bias flux limits of validity of the perturbation approach embodied in
amplitude isA=0.1. Using a detector measuring total outputour expansion of the transition rates in a power series in the
power at frequency)=0 (diamond$, the SQUID detection parameteA’ =A/\/%§. We have extended the computation
performance matches the optimal detector. At frequefdcy of the noise poweN(Q) to O(A’4) and verified(not shown
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S+N, sim. N, sim. Pg, sim. Py, mixed
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FIG. 3. Output powe(in dB) and detection probabiliti?4 at frequencie$) =0 (top row),  (middle row), and 2 (bottom row, plotted
as a function of dc biag, in normalized unitgsee text and noise variance;‘; (in dB). Columns 1 and 2: total power and noise power,
respectively, computed via unfiltered simulations; column 3 and 4: detection probdbilitat a fixed false alarm probability dP;
=0.1), computed via direct simulations and via a mixture of simulation and thi@eey texx, respectively. Numbers inside each frame
denote the maximum and minimum powéirs dB), and the maximum and minimum probabilitiésx,=0.0333. Other parameter values:
same as Fig. 1.

that the fourth-order term makes a negligible contribution toproximations were studied by settifg=0, using7.=0.01

the noise power within the regime of validity of the pertur- andT=161 s. We also note that the cyclic bias frequency
bation expansion. Note, however, that for vesmall noise  should be carefully selected to stay within the framework of
variances with the subthreshold signal strengths considerdtie adiabatic approximation that is central to the theoretical
here, the perturbation theory breaks down; in fact, this paealculations of this work.

rameter range corresponds to the strongly nonlinear regime

wherein interesting phenomefe.g., the appearance of dips 1
in the output PSIPhave been observdd9].

We conclude this section by summarizing the parameter 08 &
ranges investigated. Starting with=0.1, 7.=0.01, andT i
=20.1 s(not shown, we found that signal detection &k
=w, 2w Was quite poor. We increased the bias amplitude to 06 A
A=0.56 (just below the deterministic switching threshpld N D
and obtained very good detection. It is important to reiterate oal
that in practical scenarios, the parameté&s w, and T,
would typically be under our control, whereAs,, 7., and F
05 would be imposed by the conditions of the experiment or 027
application. To boost detection without approaching the de-
terministic switching threshold and thereby abandoning per-
turbation theory, we also tried increasing the observation 02 0.4 0.6 038 1
time to T=161 s, while keepindh=0.1 andr.=0.01; this Pr
yielded meaningful detection &= w,2w. Realizing that the FIG. 4. Probability of detectiof4 vs probability of false alarm
quality of detection obtainable via the optimal detector in-p,  ysing a detector measuring total SQUID output power at fre-
creases with decreasing [see(33)], we were also able t0  quencyQ=2w. Solid curve: simulation. Dashed curve: mixture of
improve signal detection considerably over the base case kyimulation and theorysee text Dotted curve: purely theoretical
reducing the noise correlation time tg=0.0005, while prediction.x0=0.2,a-§=713.33 dB. Other parameter values: same
keepingA=0.1 andT=20.1 sec. The nonperturbative ap- as Fig. 3.
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FIG. 6. Same as Fig. 3 with=0.56,Aw= /32, andT=20.1 sec.
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FIG. 7. Same as Fig. 3 with.=0.0005,A w = w/32, andT=20.1 sec.

VI. CONCLUDING REMARKS in practice, they have a finite widtsuperimposed on a noise

Stochastic resonance, when carefully invoked, can enpackground. The heights of the peatend the attendant
R ciully ' SNR’s) are very sensitive to even small changes in the target
hance the response of @anpriori nonlinear detector. Even

when the detector is nonlinear, however, a knowledge of th dc signal, so that one can compute detection probabilities by

signal detection statistics and their behavior under the cor%lgsfee r;’:ﬂ?eght?:;%e;rg ;T;Qg{%gtvse?;;ver:gg?T)chsgrt;:%ms'
Q|t|ons of SR is essential be_fore one can consider a praCtICé\}vhereas the false alarm rate is set by the noise background.
implementation. In our earlier publications,7], we com-

puted the signal detection statistics for a different bistabl Clearly, this technique affords the possibility of greatly en-

dynamical device under the “classical” SR scenario. The anced detectability by providing a means of 'moving” the

results clearly showed that there was an optimal noise valutglrget signal into a more acceptable band of the output PSD

at which the detection probabilitiffor a fixed false alarm Via a careful sglectlon of_the bias frequensy .
e . Unresolved issues which may need to be addressed in the
rate was maximized. However, when the number of adjust-

able parameters in the svstem is increased. the svstem haSc;ontext of specific applications include the effects of corre-
para . ne Sysu . ' yste Iafions between the noise and the ac bias signal. Further, the
be optimized in a higher dimensional space, and it is clear

[3] that there exist regimes wherein the response can be sig- e e o A e e e e

nificantly degraded; hence, a computation of the signal de- * Cw

tection statistics in the space of adjustable parameters be- 08 "

comes critical. As in our earlier work3], the theoretical *

results agree very well with simulations in the framework of N 06}

the adiabatic and perturbation-theoretic approximations used.

In this paper we have studied a nonlinear “mixing” or 0.4 % B x

“heterodyning” scheme. The scheme affords a technique - o,

whereby weak déor ac—we defer consideration of this case 02 D"EL‘;"-E'“
e

to a future publicationtarget signals are made more detect-
able by “mixing” them with aknownac bias signal in the
nonlinear dynamic device. While we have used the rf
SQUID (in a continuation of our previous wor]) as the FIG. 8. Detection probability?, for a fixed false alarm prob-
example device for calculational purposes, the results of thigpility of P;=0.1, maximized over dc biag,, using a detector
paper apply to a large class of devices characterized by dyneasuring total output power at frequencf@s=0 (diamond3, o
namics of the form(2), which involve bi- or multistable po- (star3, and 2w (boxe$, plotted as a function of noise varianoé
tential energy functions with adjustable asymmetry. The out{in dB). Solid curve:P for optimal linear detector. Parameter val-
put PSD consists of signal peakia theory, delta functions; ues: same as Fig. 3.
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deterministic switching threshold and selecting a bias fre-
quency high enough so that the target data are collected over
many cycles of the bias signal will yield the shortest obser-
vation times for obtaining acceptable performance. In many
practical applications one does not have the luxury of col-
lecting large time series from the target, i.€.js small, so

that a careful selection of the bias amplitude and frequency
are critical to good performance.
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APPENDIX

Here we list the definitions of the constants used in Efj$). and (12):

_ay-ay_pap-ap) (265~ 1) a+al+ w(ay—ay) (2851~ Da+a]

’ C = ’ C =-
4a? 4o(a®+ w?) 2 3 4a

C,=
! 4alw?

aE— ;B

Q1 =a, blfw, Ci=——7".
2a(a’+ w?)

Bl(26s1—1)a+a]

20w

bZE_

— — — — 1
ag=w(aB-apB), bs=apl(26,,—1)a+al+w’[(26,—1)B+A], Csfm-

as=aB(aB—aB)—alay—ay)]+ o -2B(aB—af)—alay—ay)],
by=aw[3B(aB—aB)—2a(ay—ay)]-203(ay—ay),

1
C4= 2, 2\, 2 2"
da(a+ w)(a+4w)

Bcs3

as= —as, b5E_b3, CSET.

(2831~ Data

2 _ _
ag=p°, bg=yw, Cg=
8aw?

a;=—apf’[(28s1~ Da+al-20*2p[(28,,~ 1) B+ B]— (ay—ay)},
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br=w{2B(aB~aB)+ay[(28;1~Da+al+40? (25~ 1) y+ v},

1
©r 8w?(a’+4w?) '
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