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Oscillatory dynamics of a nonlinear amplifier in the high-gain regime:
Exploiting a global connection
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We study the oscillator equations describing a type of nonlinear amplifier, exemplified by a two-junction
superconducting quantum interference device. Just beyond the onset of spontaneous oscillations, the system is
known to show significantly enhanced sensitivity to very weak magnetic signals. The global phase-space
structure allows us to apply a center manifold technique to calculate the frequency of spontaneous oscillations
as a function of the natural control parameters. The derived scaling form compares very well with numerical
simulations. The ability to quantify the oscillation frequency permits its exploitation as a detection/analysis
tool in remote sensing applications, and could also provide a pathway to a dynamic lowering of the low-
frequency noise floor in oscillators exhibiting this class of dynamical behavior.

Nonlinear dynamical systems are very sensitive to smalbackground noise floplis obtained just past the bifurcation
perturbations close to the onset of a bifurcation. This is repoint, where one observes very sensitive input signal depen-
sponsible for the enhanced difficulty in screening out un-dence of the solutioné.e., high gain. It is thus of special
wanted environmental perturbations near bifurcation pOintSSigniﬁcance to understand and quantify the dynamics in this
as observed in experiments of virtually all types, rangingregime.
from electrical to mechanical, optical, and fluid systéms. |n this paper, we present an analytic calculation of the
Yet, this very same sensitivity affords a general mechanismypontaneous oscillation frequency and its scaling in terms of
for signal amplification for a broad class of nonlinear e (contro) parameter “distance” from the singular point.

devicesz.h it hani hich _ Close to the singular point there is a well-defined separation
A rather different mechanism which can Improve a sys-yt (ime scales which can be exploited using a center mani-

tems3 sensitivity to weak signals is stochastic resonanceg, g technique to reduce the effective phase-space dimen-
(SR.” Recently, there has been progress towards explomngion That we can apply the technique here is somewhat un-
the SR effect in dc superconducting quantum interferencé ~ : .
devices (SQUID’S), to take advantage of the background usual, and is possible (_)nly because of the global structure of
noise rather than devise ever more sophisticated shieldingle dynamics. In partlcular,_ thg phase-space t0p0|ggy n-
and cancellation mechanis&xperiments are underway to duces &addle-node connectigti®so that the normally ‘in-
carry out this scheme in highs SQUID arrays. These de- accgssmle running state reg|me—|nacce55|ble in the sense
velopments are driven by the SQUID’s role as the most senf direct analytic treatment—.|s reqdered accessible, at least
sitive detector of magnetic fields, whose practical applica€l0Se enough to the bifurcation point. o
tions are usually noise limiteiThese devices are expected  Previous theoretical work has afforded a good description
to find increasing utility in a variety of remote sensing appli- ©f various other przoper_tles of the SQUID dynamics in the
cations in areas as diverse as biomagnetics, geophysic%t,at'_cl_ and runnlné regimes. Our goal here is to determine
mine/explosive detection, and fundamental measurements.eXplicitly the oscillation frequency, which is related to the
The dc SQUID consists of two Josephson junctions symyoltag_e across the devi€é,in terms of the _b@s parameters.
metrically inserted into a superconducting Idom the ab- Knowing the frequency affords the possibility of dynami-
sence of external signals, it exists in either a statigper-  Cally lowering the low-frequency noise floor by injecting a
conducting or a dynamid(finite voltage state, depending on bl_as signal at this frequency or one of its overtones. Quanti-
biasing. As with many physical systems, the dynamics folfying small changes in thg frequency that occur in the pres-
low the “particle-in-a-potential” paradigm, with the poten- €nce of externaltarge) signals could afford a detection
tial function having multiple stable minima in the static case.Meéchanism, and experiments involving synchronization to an
In this state, the dynamical variablése Schidinger phase external S|gnal orto another SQUID WC'Juld. inevitably bengﬂt
angles converge to constant values at long times. As a pafrom ana priori knowledge of the oscillation frequency in
rameter is varied through a bifurcation point, the potential€'ms of the bias parameters. _ _
minima disappear and the system is attracted to a periodic 'n€ SQUID dynamics are described by equations for the
orbit, corresponding to oscillatory solutions for the phaseSchralinger phases of theéassumed identicalJosephson
angles modulo # or the experimentally observable circulat- junctions®® r5,=1,/2+(—1)'Is—1gsind, i=1,2, where
ing current’ Recent experiments and simulatidfsshow |, the circulating current induced in the loop by an external
that the best response to an input sigialthe presence of a magnetic flux, can be written in the foril /1= 6;— 5,
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e v r v v 4%~ =~ v -] tion” refers to the existence of orbits connecting each node
O rr vt )Y to a saddle and each saddle to the next node. When the
TN T T T T T T ey bifurcation occurs, a running state is created in a global bi-
M furcation, the attractor resulting from the chain(oferged
S MDA R saddle-node-saddle connections. The ensuing oscillations
e e v v v v ~ -~ - ] having the form of relaxation oscillatioris.
Qlbrvwre vy NN The resulting oscillation frequency is generally very high,
adadhdh b S Y Y so that usually only the time-averaged quantityis mea-
> T M LIS sured in experimentésee, however, Ref. 14, where the os-
3 e ‘ : AR cillations were actually observed and the frequency com-
B A puted in the extreme Ilmltlng_case @f<1). The SQUID
2 R e e response can be defined via lyws @, transfer character-
s B e i istic and quantified in the oscillatory regime through a com-
[ DR R putation of the input-output gain or the output signal-to-noise
1 IESSSNY ARDDRRRDRRDEE ratio (SNR) at the frequency of a weak injected signal, as a
SRS AR function of the bias parameters,(,,).*® As emphasized
] vl R . above, the optimal respongkighest gain or output SNRs
obtained just beyond the onset of oscillations. In what fol-
02 04 06 08 1 12 14 lows, our goal is to determine the spontaneous oscillation
S period in this regime. As we show, the result has a simple

scaling form and compares well with direct numerical simu-
FIG. 1. Phase portrait for the SQUID system. Close to the bi-|ations of the full nonlinear equatior(4).

furcation pointJ=J, all orbits are attracted on a fast time scale to  The calculation proceeds in three steps. First, we consider
the one-dimensional subspadgold); evolution along the center the singular point af=J., and determine the center mani-
manifold is slow(note that the length of an arrow’s tail is propor- fold. Second, we unfold the dynamics for valuesiaiose to

tional to the local flow rate The local analysis Eq2) only de- 5 ' generate the local nonlinear dynamics along the center

scribes the boxed region, but this captures the main contribution t . : : :
the total period of the running state whém J.. The plot shown is Manifold. Crucially, this local analysis captures the very

_ _ s slow dynamics which is responsible for the long period of
for ®e,=0.2,6=1, andJ—J.=0.007. the running state. Third, we get a quantitative expression for
the running period by solving the reduced equation. The re-

—27®./®,. Here,7=1/(2eR) is a characteristic time con- s .
sult is increasingly accurate ds-J..

stant(R being the normal state resistance of the junctions We start by considering the dvnamics in the vicinity of
p=2mLlo/®, the nonlinearity parametek, the loop induc- . g oin?solution whgedzJ yWe introduce the sm)e/lll
tance,ly the junction critical current, anéy,=h/(2e) the L p_ n ¢

flux quantum. The two natural experimental control param-quant'tlesx_ 6o anqu—E—Eo and Taylor expand the
eters are the applied dc magnetic fld and the dc bias vecior field to quadratic order,

currentl,, which we take to be symmetrically applied to the _ 2
loop. It is convenient to introduce a scaled time, flul( X= —(—+A
=P, /dy), and currenfI=1,/(2l,)], and to rewrite the dif-

ferential equations in terms of the sum and difference .
variablesS1314 3 = (8, + 8,)/2, 5=(68,— 8,)/2, with the re- y=—Ay+Bx+Dy?+2Cxy+Dx*+0(3), 2
sult (defininga=7d,,),

X+ By+ Cx2+ 2Dxy+ Cy?+0O(3),

whereA=cos2,,c0sd8,, B=sin&siny, C=3 sin §,cosZ,

_ 2 and D= 3cos& sinS,, and O(3) represents terms of cubic
5= — E(a— a)—cos sind order and higher. A simple rotatidddiagonalizes the linear
part
S =J—cosdsin. (1) X u cosf  sind
s |=| |; s= . , ©)
v —sin# coséd

Cx?+2Dxy+ Cy?
Dy2+2Cxy+Dx?

in the phase-space portrait of Fig. 1. In the superconductingvhere tan 2= — 3 sin &, sinZ,, so that

parameterspB, a, andJ. For fixeda and g, there is a special dt ) (4)
voltage oscillations. The thresholtl can be readily com- the trajectories relax toa=0 with exponential rate. while
counters a “bottleneck” once each period near the pointequation foru(v).

The key qualitative feature of the dynamics is illustrated
regime, the system is attracted to a stable fixed point
(80.20), whose position is a function of the three system d U) ()\ O)(U) S

= +
v 0 0/\v

value,J., of the bias current above which the superconduct-
ing state is destroyed: far>J. the system displays periodic wherex = —2/8—2 cos3,cos&,. To linear order, therefore,
puted numerically or analytical§/jn good agreement with thev evolution is neutral. The center manifold is determined
experiment. Close to the bifurcation point, the system enby setting du/dt=0 and solving the resulting algebraic
where the stablénode fixed point annihilates with an un- We can repeat the same steps close to, but not precisely
stable(saddle fixed point. The term “saddle-node connec- at, the bifurcation point. Technicall, we treat the aug-
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Dex =02 Dex =04 D =049 Figure 2 compares this with numerical simulations of the
O‘L; ” full nonlinear dynamics given by Eql). The simulations
- om * were run for a range of system parameigrsnd®.,: owing
L oo to a parameter symmetry the full range®§, is between 0
0.005 and 0.5; meanwhile, practical SQUID’s are often fabricated
0002 to haveB~1. In the figure, the solid line represents E8),
and the data are plotted over three decades in the reduced
0‘:); parameted—J.. In a typical SQUID,J—J.=0.001 might
o om correspond to~5-10 nA, with the oscillation frequency be-
2 oa ing in the GHz regimé.The agreement is good over the full
0.005 range shown; it is excellent for smaller valuesoandd., .
0002 The agreement grows systematically worse for laggemd
d.,, since either reduces the size of the bottleneck regime.
0.1 Even in the latter cases, the agreement improves in the limit
< zg J—J., i.e., close enough to the bifurcation point, where the
?I' - o001 SQUID vyields its optimal response to weak target sig@ls in
@ 0005 the presence of a noise floor. In this regime, the complLged
0.002 vs &, transfer characteristic agrees remarkably well with

0.0001 0001 001 0.1 00001 0001 001 0.1 00001 0.001 001 01

J-J;

FIG. 2. Log-log plot of oscillation frequency=1/T vs J—J,
determined from direct numerical simulatiofmints and the ana-
lytic prediction Eq.(8) (line), for various values of3, ®.,, andJ.

experimentally obtained oné$.

In laboratory settings, it is often convenient to use the
applied dc flux as the control parameter. We can easily arrive
at the analogous result to E¢B) by keepingJ fixed, and
sweeping®d ., through its critical valueb,,. at the bifurca-

Figure 1 was drawn for the same parameters as the middle lefion. This simply modifies the prefactor of E¢8), so T

panel.

mented dynamical system, adding the equatddndt=0 to

scales with the same exponentdn,,— ® ..
The above calculation represents a critical step towards
exploiting the nonlinear response of the dc SQUID in the

Eqg. (1), and expand the dynamics about the critical fixedoscillatory regime. In our experimefitthe SQUID is oper-

point (8,2 ,Jc). The resultingu-v subsysten{4) is modi-

fied only by a new constant term:

al o35 (o ol

+S

whereJ—J.. is of orderx2. It follows thatu=Au+0O(2), so
that the attracting subspaceus- O(2), and theevolution of

v on the center manifold is given by

v=(J—J.)cosh+ av?+0(3)

is at its smallest. We obtain the solution,

v(t)= \/Etar(ﬁt)

with F=(J—J;)cosé, whence the period of the oscilla-

tions is®

T=mn/\Fa.

Cx?+2Dxy+Cy?
Dy?+2Cxy+Dx?)’

|

: (6)

where the constant is readily determined by carrying out
the matrix multiplication indicated in Edq5), with result«

= —sin(C—D sin 20)+cosHA(D—Csin 26). Ignoring terms
of cubic order and higher, we may now integrate Eg).
directly, realizing that the dynamicor small J—J.) is

dominated by the passage through the “bottleneck” where

(7)

8

©)

ated as a free-running nonlinear dynamic device, not in the
conventional flux-locked mode; hence, one is in a position to
observe and exploit the richness of nonlinear dynamic be-
havior that would otherwise be inaccessible. In one applica-
tion, the presence of an additional unknown “target” signal
can be quantified by observing its effect on the free-running
SQUID: a dc signal will shift the oscillation frequency, while

a periodic signal will also generate combination tones in the
power spectrum. A rather different effect can be used to
dynamically suppress the low-frequency noise background in
the SQUID itself, by injecting &nownbias signal close to
the running frequency and inducing a frequency locked
state!® Given the problems associated with operating in
noisy/unshielded environments, this procedure could repre-
sent a major step in the active research area of noise cancel-
lation. Investigations into these and other related topics must
begin with an analysis of the effects of noise on the onset
and frequency of the spontaneous oscillations.

Our calculation relied on a global phase-space structure,
namely the saddle-node connection. While oscillatory behav-
ior arising from this structure is rare in some general math-
ematical sensgjt arises here from the fact that the Joseph-
son variables are phase angles. A similar structure appears
frequently in the class of coupled oscillator systems known
as phase models. Thus, the treatment used in this paper
should find wider application in, for instance, certain excit-
able biological oscillators and switch¥s.
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